Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,910 Bytes
476e0f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
#!/usr/bin/env python
# coding=utf-8
import numpy as np
import open3d as o3d
import os
import argparse
import torch
import trimesh
import pyrender
import copy
from copy import deepcopy
import torch.nn.functional as F
from help_func import auto_orient_and_center_poses
import cv2
def extract_depth_from_mesh(mesh,
c2w_list,
H, W, fx, fy, cx, cy,
far=20.0,):
"""Adapted from Go-Surf: https://github.com/JingwenWang95/go-surf"""
os.environ['PYOPENGL_PLATFORM'] = 'egl' # allows for GPU-accelerated rendering
scene = pyrender.Scene()
#mesh = trimesh.load("/home/yuzh/mnt/A100_data/sdfstudio/meshes_tnt/bakedangelo/Courthouse_fullres_1024.ply")
#mesh = trimesh.load("/home/yuzh/mnt/A100_data/sdfstudio/meshes_tnt/bakedangelo/Caterpillar_fullres_1024.ply")
#mesh = trimesh.load("/home/yuzh/mnt/A100_data/sdfstudio/meshes_tnt/bakedangelo/Truck_fullres_1024.ply")
#mesh = trimesh.load("/home/yuzh/mnt/A3_data/sdfstudio/meshes_tnt/bakedangelo/Meetingroom_fullres_1024_scaleback.ply")
# mesh = trimesh.load("/home/yuzh/mnt/A3_data/sdfstudio/meshes_tnt/bakedangelo/Barn_fullres_1024.ply")
mesh = pyrender.Mesh.from_trimesh(mesh)
scene.add(mesh)
"""
import glob
for f in glob.glob("/home/yuzh/mnt/A100/Projects/sdfstudio/tmp_meshes/*.ply"):
mesh = trimesh.load(f)
mesh = pyrender.Mesh.from_trimesh(mesh)
scene.add(mesh)
print(f)
"""
camera = pyrender.IntrinsicsCamera(fx=fx, fy=fy, cx=cx, cy=cy, znear=0.01, zfar=far)
camera_node = pyrender.Node(camera=camera, matrix=np.eye(4))
scene.add_node(camera_node)
renderer = pyrender.OffscreenRenderer(W, H)
flags = pyrender.RenderFlags.OFFSCREEN | pyrender.RenderFlags.DEPTH_ONLY | pyrender.RenderFlags.SKIP_CULL_FACES
depths = []
for c2w in c2w_list:
c2w = c2w.detach().numpy()
# Convert camera coordinate system from OpenCV to OpenGL
# Details refer to: https://pyrender.readthedocs.io/en/latest/examples/cameras.html
c2w_gl = deepcopy(c2w)
# nerfstudio's .json file is already OpenGL coordinate
#c2w_gl[:3, 1] *= -1
#c2w_gl[:3, 2] *= -1
scene.set_pose(camera_node, c2w_gl)
depth = renderer.render(scene, flags)
#print(depth, depth.min(), depth.max(), depth.shape)
#exit(-1)
#cv2.imshow("s", depth)
#cv2.waitKey(0)
depth = torch.from_numpy(depth)
depths.append(depth)
renderer.delete()
return depths
class Mesher(object):
def __init__(self, H, W, fx, fy, cx, cy, far, points_batch_size=5e5):
"""
Mesher class, given a scene representation, the mesher extracts the mesh from it.
Args:
cfg: (dict), parsed config dict
args: (class 'argparse.Namespace'), argparse arguments
slam: (class NICE-SLAM), NICE-SLAM main class
points_batch_size: (int), maximum points size for query in one batch
Used to alleviate GPU memory usage. Defaults to 5e5
ray_batch_size: (int), maximum ray size for query in one batch
Used to alleviate GPU memory usage. Defaults to 1e5
"""
self.points_batch_size = int(points_batch_size)
self.scale = 1.0
self.device = 'cuda:0'
self.forecast_radius = 0
self.H, self.W, self.fx, self.fy, self.cx, self.cy = H, W, fx, fy, cx, cy
self.resolution = 256
self.level_set = 0.0
self.remove_small_geometry_threshold = 0.2
self.get_largest_components = True
self.verbose = True
@torch.no_grad()
def point_masks(self,
input_points,
depth_list,
estimate_c2w_list):
"""
Split the input points into seen, unseen, and forecast,
according to the estimated camera pose and depth image.
Args:
input_points: (Tensor), input points
keyframe_dict: (list), list of keyframe info dictionary
estimate_c2w_list: (list), estimated camera pose.
idx: (int), current frame index
device: (str), device name to compute on.
get_mask_use_all_frames:
Returns:
seen_mask: (Tensor), the mask for seen area.
forecast_mask: (Tensor), the mask for forecast area.
unseen_mask: (Tensor), the mask for unseen area.
"""
H, W, fx, fy, cx, cy = self.H, self.W, self.fx, self.fy, self.cx, self.cy
device =self.device
if not isinstance(input_points, torch.Tensor):
input_points = torch.from_numpy(input_points)
input_points = input_points.clone().detach().float()
mask = []
forecast_mask = []
# this eps should be tuned for the scene
eps = 0.005
for _, pnts in enumerate(torch.split(input_points, self.points_batch_size, dim=0)):
n_pts, _ = pnts.shape
valid = torch.zeros(n_pts).to(device).bool()
valid_num = torch.zeros(n_pts).to(device).int()
valid_forecast = torch.zeros(n_pts).to(device).bool()
r = self.forecast_radius
for i in range(len(estimate_c2w_list)):
points = pnts.to(device).float()
c2w = estimate_c2w_list[i].to(device).float()
# transform to opencv coordinate as nerfstudio dataparser's .json file is in opengl coordinate
# c2w[:3, 1:3] *= -1
depth = depth_list[i].to(device)
w2c = torch.inverse(c2w).to(device).float()
ones = torch.ones_like(points[:, 0]).reshape(-1, 1).to(device)
homo_points = torch.cat([points, ones], dim=1).reshape(-1, 4, 1).to(device).float()
cam_cord_homo = w2c @ homo_points
cam_cord = cam_cord_homo[:, :3, :] # [N, 3, 1]
K = np.eye(3)
K[0, 0], K[0, 2], K[1, 1], K[1, 2] = fx, cx, fy, cy
K = torch.from_numpy(K).to(device)
uv = K.float() @ cam_cord.float()
z = uv[:, -1:] + 1e-8
uv = uv[:, :2] / z # [N, 2, 1]
u, v = uv[:, 0, 0].float(), uv[:, 1, 0].float()
z = z[:, 0, 0].float()
in_frustum = (u >= 0) & (u <= W-1) & (v >= 0) & (v <= H-1) & (z > 0)
forecast_frustum = (u >= -r) & (u <= W-1+r) & (v >= -r) & (v <= H-1+r) & (z > 0)
depth = depth.reshape(1, 1, H, W)
vgrid = uv.reshape(1, 1, -1, 2)
# normalized to [-1, 1]
vgrid[..., 0] = (vgrid[..., 0] / (W - 1) * 2.0 - 1.0)
vgrid[..., 1] = (vgrid[..., 1] / (H - 1) * 2.0 - 1.0)
depth_sample = F.grid_sample(depth, vgrid, padding_mode='border', align_corners=True)
depth_sample = depth_sample.reshape(-1)
is_front_face = torch.where((depth_sample > 0.0), (z < (depth_sample + eps)), torch.ones_like(z).bool())
is_forecast_face = torch.where((depth_sample > 0.0), (z < (depth_sample + eps)), torch.ones_like(z).bool())
in_frustum = in_frustum & is_front_face
valid = valid | in_frustum.bool()
valid_num = valid_num + in_frustum.int()
forecast_frustum = forecast_frustum & is_forecast_face
forecast_frustum = in_frustum | forecast_frustum
valid_forecast = valid_forecast | forecast_frustum.bool()
valid = valid_num >= 20
# valid = valid_num >= 80
mask.append(valid.cpu().numpy())
forecast_mask.append(valid_forecast.cpu().numpy())
mask = np.concatenate(mask, axis=0)
forecast_mask = np.concatenate(forecast_mask, axis=0)
return mask, forecast_mask
@torch.no_grad()
def get_connected_mesh(self, mesh, get_largest_components=False):
print("split")
components = mesh.split(only_watertight=False)
print("split completed")
if get_largest_components:
areas = np.array([c.area for c in components], dtype=np.float)
mesh = components[areas.argmax()]
else:
new_components = []
global_area = mesh.area
for comp in components:
if comp.area > self.remove_small_geometry_threshold * global_area:
new_components.append(comp)
mesh = trimesh.util.concatenate(new_components)
return mesh
@torch.no_grad()
def cull_mesh(self,
mesh,
estimate_c2w_list):
"""
Extract mesh from scene representation and save mesh to file.
Args:
mesh_out_file: (str), output mesh filename
estimate_c2w_list: (Tensor), estimated camera pose, camera coordinate system is same with OpenCV
[N, 4, 4]
"""
step = 1
print('Start Mesh Culling', end='')
# cull with 3d projection
print(f' --->> {step}(Projection)', end='')
forward_depths = extract_depth_from_mesh(
mesh, estimate_c2w_list, H=self.H, W=self.W, fx=self.fx, fy=self.fy, cx=self.cx, cy=self.cy, far=20.0
)
print("after forward depth")
"""
backward_mesh = deepcopy(mesh)
backward_mesh.faces[:, [1, 2]] = backward_mesh.faces[:, [2, 1]] # make the mesh faces from, e.g., facing inside to outside
backward_depths = extract_depth_from_mesh(
backward_mesh, estimate_c2w_list, H=self.H, W=self.W, fx=self.fx, fy=self.fy, cx=self.cx, cy=self.cy, far=20.0
)
depth_list = []
for i in range(len(forward_depths)):
depth = torch.where(forward_depths[i] > 0, forward_depths[i], backward_depths[i])
depth = torch.where((backward_depths[i] > 0) & (backward_depths[i] < depth), backward_depths[i], depth)
depth_list.append(depth)
"""
depth_list = forward_depths
print("in point masks")
vertices = mesh.vertices[:, :3]
mask, forecast_mask = self.point_masks(
vertices, depth_list, estimate_c2w_list
)
print(mask.shape, forecast_mask.shape, mask.mean())
face_mask = mask[mesh.faces].all(axis=1)
mesh_with_hole = deepcopy(mesh)
mesh_with_hole.update_faces(face_mask)
mesh_with_hole.remove_unreferenced_vertices()
#mesh_with_hole.process(validate=True)
step += 1
print("compute componet")
# cull by computing connected components
print(f' --->> {step}(Component)', end='')
#cull_mesh = self.get_connected_mesh(mesh_with_hole, self.get_largest_components)
cull_mesh = mesh_with_hole
print("after compute componet")
step += 1
if abs(self.forecast_radius) > 0:
# for forecasting
print(f' --->> {step}(Forecast:{self.forecast_radius})', end='')
forecast_face_mask = forecast_mask[mesh.faces].all(axis=1)
forecast_mesh = deepcopy(mesh)
forecast_mesh.update_faces(forecast_face_mask)
forecast_mesh.remove_unreferenced_vertices()
cull_pc = o3d.geometry.PointCloud(
o3d.utility.Vector3dVector(np.array(cull_mesh.vertices))
)
aabb = cull_pc.get_oriented_bounding_box()
indices = aabb.get_point_indices_within_bounding_box(
o3d.utility.Vector3dVector(np.array(forecast_mesh.vertices))
)
bound_mask = np.zeros(len(forecast_mesh.vertices))
bound_mask[indices] = 1.0
bound_mask = bound_mask.astype(np.bool_)
forecast_face_mask = bound_mask[forecast_mesh.faces].all(axis=1)
forecast_mesh.update_faces(forecast_face_mask)
forecast_mesh.remove_unreferenced_vertices()
forecast_mesh = self.get_connected_mesh(forecast_mesh, self.get_largest_components)
step += 1
else:
forecast_mesh = deepcopy(cull_mesh)
print(' --->> Done!')
return cull_mesh, forecast_mesh
def __call__(self, mesh_path, estimate_c2w_list):
print(f'Loading mesh from {mesh_path}...')
mesh = trimesh.load(mesh_path, process=True)
mesh.merge_vertices()
"""
print(f'Mesh loaded from {mesh_path}!')
mask = np.linalg.norm(mesh.vertices, axis=-1) < 1.0
print(mask.shape, mask.mean())
face_mask = mask[mesh.faces].all(axis=1)
mesh_with_hole = deepcopy(mesh)
mesh_with_hole.update_faces(face_mask)
mesh_with_hole.remove_unreferenced_vertices()
mesh = mesh_with_hole
print(f'Mesh clear from {mesh_path}!')
"""
mesh_out_file = mesh_path.replace('.ply', '_cull.ply')
cull_mesh, forecast_mesh = self.cull_mesh(
mesh=mesh,
estimate_c2w_list=estimate_c2w_list,
)
cull_mesh.export(mesh_out_file)
if self.verbose:
print("\nINFO: Save mesh at {}!\n".format(mesh_out_file))
torch.cuda.empty_cache()
def read_trajectory(filename):
traj = []
with open(filename, "r") as f:
metastr = f.readline()
while metastr:
metadata = map(int, metastr.split())
mat = np.zeros(shape=(4, 4))
for i in range(4):
matstr = f.readline()
mat[i, :] = np.fromstring(matstr, dtype=float, sep=" \t")
traj.append(mat)
metastr = f.readline()
return traj
def get_traj(traj_path):
print(f'Load trajectory from {traj_path}.')
traj_to_register = []
if traj_path.endswith('.npy'):
ld = np.load(traj_path)
for i in range(len(ld)):
# traj_to_register.append(CameraPose(meta=None, mat=ld[i]))
traj_to_register.append(ld[i])
elif traj_path.endswith('.json'): # instant-npg or sdfstudio format
import json
with open(traj_path, encoding='UTF-8') as f:
meta = json.load(f)
poses_dict = {}
for i, frame in enumerate(meta['frames']):
filepath = frame['file_path']
new_i = int(filepath[13:18]) - 1
poses_dict[new_i] = np.array(frame['transform_matrix'])
poses = []
for i in range(len(poses_dict)):
poses.append(poses_dict[i])
poses = torch.from_numpy(np.array(poses).astype(np.float32))
poses, _ = auto_orient_and_center_poses(poses, method='up', center_poses=True)
scale_factor = 1.0 / float(torch.max(torch.abs(poses[:, :3, 3])))
poses[:, :3, 3] *= scale_factor
poses = poses.numpy()
for i in range(len(poses)):
traj_to_register.append(poses[i])
else:
traj_to_register = read_trajectory(traj_path)
# with open("test.xyz","w") as file_object:
# for m in traj_to_register:
# # p = - m[:3,:3].T @ m[:3,3:]
# # p = p[:,0]
# p = m[:3,-1]
# print("%f %f %f"%(p[0],p[1],p[2]),file=file_object)
for i in range(len(traj_to_register)):
c2w = torch.from_numpy(traj_to_register[i]).float()
if c2w.shape == (3, 4):
c2w = torch.cat([
c2w,
torch.tensor([[0, 0, 0, 1]]).float()
], dim=0)
traj_to_register[i] = c2w # [4, 4]
print(f'Trajectory loaded from {traj_path}, including {len(traj_to_register)} camera views.')
return traj_to_register
if __name__ == "__main__":
print('Start culling...')
parser = argparse.ArgumentParser()
parser.add_argument(
"--traj-path",
type=str,
required=True,
help=
"path to trajectory file. See `convert_to_logfile.py` to create this file.",
)
parser.add_argument(
"--ply-path",
type=str,
required=True,
help="path to reconstruction ply file",
)
args = parser.parse_args()
estimate_c2w_list = get_traj(args.traj_path)
# for TanksandTemples dataset
H, W = 1080, 1920
fx = 1163.8678928442187
fy = 1172.793101201448
cx = 962.3120628412543
cy = 542.0667209577691
far = 20.0
mesher = Mesher(H, W, fx, fy, cx, cy, far, points_batch_size=5e5)
# mesher = Mesher(H*2, W*2, fx*2, fy*2, cx*2, cy*2, far, points_batch_size=5e5)
mesher(args.ply_path, estimate_c2w_list)
print('Done!')
|