File size: 16,910 Bytes
476e0f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
#!/usr/bin/env python
# coding=utf-8
import numpy as np
import open3d as o3d
import os
import argparse
import torch
import trimesh
import pyrender
import copy
from copy import deepcopy
import torch.nn.functional as F
from help_func import auto_orient_and_center_poses
import cv2


def extract_depth_from_mesh(mesh,
                            c2w_list,
                            H, W, fx, fy, cx, cy,
                            far=20.0,):
    """Adapted from Go-Surf: https://github.com/JingwenWang95/go-surf"""
    os.environ['PYOPENGL_PLATFORM'] = 'egl'  # allows for GPU-accelerated rendering
    scene = pyrender.Scene()
    #mesh = trimesh.load("/home/yuzh/mnt/A100_data/sdfstudio/meshes_tnt/bakedangelo/Courthouse_fullres_1024.ply")
    #mesh = trimesh.load("/home/yuzh/mnt/A100_data/sdfstudio/meshes_tnt/bakedangelo/Caterpillar_fullres_1024.ply")
    #mesh = trimesh.load("/home/yuzh/mnt/A100_data/sdfstudio/meshes_tnt/bakedangelo/Truck_fullres_1024.ply")
    #mesh = trimesh.load("/home/yuzh/mnt/A3_data/sdfstudio/meshes_tnt/bakedangelo/Meetingroom_fullres_1024_scaleback.ply")
    # mesh = trimesh.load("/home/yuzh/mnt/A3_data/sdfstudio/meshes_tnt/bakedangelo/Barn_fullres_1024.ply")
    mesh = pyrender.Mesh.from_trimesh(mesh)
    scene.add(mesh)
    """
    import glob 
    for f in glob.glob("/home/yuzh/mnt/A100/Projects/sdfstudio/tmp_meshes/*.ply"):
        mesh = trimesh.load(f) 
        mesh = pyrender.Mesh.from_trimesh(mesh)
        scene.add(mesh)
        print(f)
    """

    camera = pyrender.IntrinsicsCamera(fx=fx, fy=fy, cx=cx, cy=cy, znear=0.01, zfar=far)
    camera_node = pyrender.Node(camera=camera, matrix=np.eye(4))
    scene.add_node(camera_node)
    renderer = pyrender.OffscreenRenderer(W, H)
    flags = pyrender.RenderFlags.OFFSCREEN | pyrender.RenderFlags.DEPTH_ONLY | pyrender.RenderFlags.SKIP_CULL_FACES

    depths = []
    for c2w in c2w_list:
        c2w = c2w.detach().numpy()
        # Convert camera coordinate system from OpenCV to OpenGL
        # Details refer to: https://pyrender.readthedocs.io/en/latest/examples/cameras.html
        c2w_gl = deepcopy(c2w)
        # nerfstudio's .json file is already OpenGL coordinate
        #c2w_gl[:3, 1] *= -1
        #c2w_gl[:3, 2] *= -1
        scene.set_pose(camera_node, c2w_gl)
        depth = renderer.render(scene, flags)
        #print(depth, depth.min(), depth.max(), depth.shape)
        #exit(-1)
        #cv2.imshow("s", depth)
        #cv2.waitKey(0)
        depth = torch.from_numpy(depth)
        depths.append(depth)

    renderer.delete()

    return depths


class Mesher(object):
    def __init__(self, H, W, fx, fy, cx, cy, far, points_batch_size=5e5):
        """
        Mesher class, given a scene representation, the mesher extracts the mesh from it.
        Args:
            cfg:                        (dict), parsed config dict
            args:                       (class 'argparse.Namespace'), argparse arguments
            slam:                       (class NICE-SLAM), NICE-SLAM main class
            points_batch_size:          (int), maximum points size for query in one batch
                                        Used to alleviate GPU memory usage. Defaults to 5e5
            ray_batch_size:             (int), maximum ray size for query in one batch
                                        Used to alleviate GPU memory usage. Defaults to 1e5
        """

        self.points_batch_size = int(points_batch_size)
        self.scale = 1.0
        self.device = 'cuda:0'
        self.forecast_radius = 0
        self.H, self.W, self.fx, self.fy, self.cx, self.cy = H, W, fx, fy, cx, cy

        self.resolution = 256
        self.level_set = 0.0
        self.remove_small_geometry_threshold = 0.2
        self.get_largest_components = True
        self.verbose = True

    @torch.no_grad()
    def point_masks(self,
                    input_points,
                    depth_list,
                    estimate_c2w_list):
        """
        Split the input points into seen, unseen, and forecast,
        according to the estimated camera pose and depth image.
        Args:
            input_points:               (Tensor), input points
            keyframe_dict:              (list), list of keyframe info dictionary
            estimate_c2w_list:          (list), estimated camera pose.
            idx:                        (int), current frame index
            device:                     (str), device name to compute on.
            get_mask_use_all_frames:

        Returns:
            seen_mask:                  (Tensor), the mask for seen area.
            forecast_mask:              (Tensor), the mask for forecast area.
            unseen_mask:                (Tensor), the mask for unseen area.

        """
        H, W, fx, fy, cx, cy = self.H, self.W, self.fx, self.fy, self.cx, self.cy
        device =self.device
        if not isinstance(input_points, torch.Tensor):
            input_points = torch.from_numpy(input_points)
        input_points = input_points.clone().detach().float()
        mask = []
        forecast_mask = []
        # this eps should be tuned for the scene
        eps = 0.005
        for _, pnts in enumerate(torch.split(input_points, self.points_batch_size, dim=0)):
            n_pts, _ = pnts.shape
            valid = torch.zeros(n_pts).to(device).bool()
            valid_num = torch.zeros(n_pts).to(device).int()
            valid_forecast = torch.zeros(n_pts).to(device).bool()
            r = self.forecast_radius
            for i in range(len(estimate_c2w_list)):
                points = pnts.to(device).float()
                c2w = estimate_c2w_list[i].to(device).float()
                # transform to opencv coordinate as nerfstudio dataparser's .json file is in opengl coordinate
                # c2w[:3, 1:3] *= -1

                depth = depth_list[i].to(device)
                w2c = torch.inverse(c2w).to(device).float()
                ones = torch.ones_like(points[:, 0]).reshape(-1, 1).to(device)
                homo_points = torch.cat([points, ones], dim=1).reshape(-1, 4, 1).to(device).float()
                cam_cord_homo = w2c @ homo_points
                cam_cord = cam_cord_homo[:, :3, :]  # [N, 3, 1]
                K = np.eye(3)
                K[0, 0], K[0, 2], K[1, 1], K[1, 2] = fx, cx, fy, cy
                K = torch.from_numpy(K).to(device)

                uv = K.float() @ cam_cord.float()
                z = uv[:, -1:] + 1e-8
                uv = uv[:, :2] / z  # [N, 2, 1]
                u, v = uv[:, 0, 0].float(), uv[:, 1, 0].float()
                z = z[:, 0, 0].float()

                in_frustum = (u >= 0) & (u <= W-1) & (v >= 0) & (v <= H-1) & (z > 0)
                forecast_frustum = (u >= -r) & (u <= W-1+r) & (v >= -r) & (v <= H-1+r) & (z > 0)

                depth = depth.reshape(1, 1, H, W)
                vgrid = uv.reshape(1, 1, -1, 2)
                # normalized to [-1, 1]
                vgrid[..., 0] = (vgrid[..., 0] / (W - 1) * 2.0 - 1.0)
                vgrid[..., 1] = (vgrid[..., 1] / (H - 1) * 2.0 - 1.0)

                depth_sample = F.grid_sample(depth, vgrid, padding_mode='border', align_corners=True)
                depth_sample = depth_sample.reshape(-1)
                is_front_face = torch.where((depth_sample > 0.0), (z < (depth_sample + eps)), torch.ones_like(z).bool())
                is_forecast_face = torch.where((depth_sample > 0.0), (z < (depth_sample + eps)), torch.ones_like(z).bool())
                in_frustum = in_frustum & is_front_face

                valid = valid | in_frustum.bool()
                valid_num = valid_num + in_frustum.int()

                forecast_frustum = forecast_frustum & is_forecast_face
                forecast_frustum = in_frustum | forecast_frustum
                valid_forecast = valid_forecast | forecast_frustum.bool()
            valid = valid_num >= 20
            # valid = valid_num >= 80
            mask.append(valid.cpu().numpy())
            forecast_mask.append(valid_forecast.cpu().numpy())

        mask = np.concatenate(mask, axis=0)
        forecast_mask = np.concatenate(forecast_mask, axis=0)

        return mask, forecast_mask


    @torch.no_grad()
    def get_connected_mesh(self, mesh, get_largest_components=False):
        print("split")
        components = mesh.split(only_watertight=False)
        print("split completed")
        if get_largest_components:
            areas = np.array([c.area for c in components], dtype=np.float)
            mesh = components[areas.argmax()]
        else:
            new_components = []
            global_area = mesh.area
            for comp in components:
                if comp.area > self.remove_small_geometry_threshold * global_area:
                    new_components.append(comp)
            mesh = trimesh.util.concatenate(new_components)

        return mesh

    @torch.no_grad()
    def cull_mesh(self,
                  mesh,
                  estimate_c2w_list):
        """
        Extract mesh from scene representation and save mesh to file.
        Args:
            mesh_out_file:              (str), output mesh filename
            estimate_c2w_list:          (Tensor), estimated camera pose, camera coordinate system is same with OpenCV
                                        [N, 4, 4]
        """

        step = 1
        print('Start Mesh Culling', end='')

        # cull with 3d projection
        print(f' --->> {step}(Projection)', end='')
        forward_depths = extract_depth_from_mesh(
            mesh, estimate_c2w_list, H=self.H, W=self.W, fx=self.fx, fy=self.fy, cx=self.cx, cy=self.cy, far=20.0
        )
        print("after forward depth")
        """        
        backward_mesh = deepcopy(mesh)
        backward_mesh.faces[:, [1, 2]] = backward_mesh.faces[:, [2, 1]]  # make the mesh faces from, e.g., facing inside to outside
        backward_depths = extract_depth_from_mesh(
            backward_mesh, estimate_c2w_list, H=self.H, W=self.W, fx=self.fx, fy=self.fy, cx=self.cx, cy=self.cy, far=20.0
        )

        depth_list = []
        for i in range(len(forward_depths)):
            depth = torch.where(forward_depths[i] > 0, forward_depths[i], backward_depths[i])
            depth = torch.where((backward_depths[i] > 0) & (backward_depths[i] < depth), backward_depths[i], depth)
            depth_list.append(depth)
        """
        depth_list = forward_depths

        print("in point masks")
        vertices = mesh.vertices[:, :3]
        mask, forecast_mask = self.point_masks(
            vertices, depth_list, estimate_c2w_list
        )
        print(mask.shape, forecast_mask.shape, mask.mean())
        
        face_mask = mask[mesh.faces].all(axis=1)
        mesh_with_hole = deepcopy(mesh)
        mesh_with_hole.update_faces(face_mask)
        mesh_with_hole.remove_unreferenced_vertices()
        #mesh_with_hole.process(validate=True)
        step += 1

        print("compute componet")
        # cull by computing connected components
        print(f' --->> {step}(Component)', end='')
        #cull_mesh = self.get_connected_mesh(mesh_with_hole, self.get_largest_components)
        cull_mesh = mesh_with_hole
        print("after compute componet")
        step += 1

        if abs(self.forecast_radius) > 0:
            # for forecasting
            print(f' --->> {step}(Forecast:{self.forecast_radius})', end='')
            forecast_face_mask = forecast_mask[mesh.faces].all(axis=1)
            forecast_mesh = deepcopy(mesh)
            forecast_mesh.update_faces(forecast_face_mask)
            forecast_mesh.remove_unreferenced_vertices()

            cull_pc = o3d.geometry.PointCloud(
                o3d.utility.Vector3dVector(np.array(cull_mesh.vertices))
            )
            aabb = cull_pc.get_oriented_bounding_box()
            indices = aabb.get_point_indices_within_bounding_box(
                o3d.utility.Vector3dVector(np.array(forecast_mesh.vertices))
            )
            bound_mask = np.zeros(len(forecast_mesh.vertices))
            bound_mask[indices] = 1.0
            bound_mask = bound_mask.astype(np.bool_)
            forecast_face_mask = bound_mask[forecast_mesh.faces].all(axis=1)
            forecast_mesh.update_faces(forecast_face_mask)
            forecast_mesh.remove_unreferenced_vertices()
            forecast_mesh = self.get_connected_mesh(forecast_mesh, self.get_largest_components)
            step += 1
        else:
            forecast_mesh = deepcopy(cull_mesh)

        print(' --->> Done!')

        return cull_mesh, forecast_mesh

    def __call__(self, mesh_path, estimate_c2w_list):
        print(f'Loading mesh from {mesh_path}...')
        mesh = trimesh.load(mesh_path, process=True)
        mesh.merge_vertices()

        """
        print(f'Mesh loaded from {mesh_path}!')
        mask = np.linalg.norm(mesh.vertices, axis=-1) < 1.0
        print(mask.shape, mask.mean())
        face_mask = mask[mesh.faces].all(axis=1)
        mesh_with_hole = deepcopy(mesh)
        mesh_with_hole.update_faces(face_mask)
        mesh_with_hole.remove_unreferenced_vertices()
        mesh = mesh_with_hole
        print(f'Mesh clear from {mesh_path}!')
        """

        mesh_out_file = mesh_path.replace('.ply', '_cull.ply')
        cull_mesh, forecast_mesh = self.cull_mesh(
            mesh=mesh,
            estimate_c2w_list=estimate_c2w_list,
        )

        cull_mesh.export(mesh_out_file)
        if self.verbose:
            print("\nINFO: Save mesh at {}!\n".format(mesh_out_file))

        torch.cuda.empty_cache()

def read_trajectory(filename):
    traj = []
    with open(filename, "r") as f:
        metastr = f.readline()
        while metastr:
            metadata = map(int, metastr.split())
            mat = np.zeros(shape=(4, 4))
            for i in range(4):
                matstr = f.readline()
                mat[i, :] = np.fromstring(matstr, dtype=float, sep=" \t")
            traj.append(mat)
            metastr = f.readline()
    return traj

def get_traj(traj_path):
    print(f'Load trajectory from {traj_path}.')
    traj_to_register = []
    if traj_path.endswith('.npy'):
        ld = np.load(traj_path)
        for i in range(len(ld)):
            # traj_to_register.append(CameraPose(meta=None, mat=ld[i]))
            traj_to_register.append(ld[i])
    elif traj_path.endswith('.json'): # instant-npg or sdfstudio format
        import json
        with open(traj_path, encoding='UTF-8') as f:
            meta = json.load(f)
        poses_dict = {}
        for i, frame in enumerate(meta['frames']):
            filepath = frame['file_path']
            new_i = int(filepath[13:18]) - 1
            poses_dict[new_i] = np.array(frame['transform_matrix'])
        poses = []
        for i in range(len(poses_dict)):
            poses.append(poses_dict[i])
        poses = torch.from_numpy(np.array(poses).astype(np.float32))
        poses, _ = auto_orient_and_center_poses(poses, method='up', center_poses=True)
        scale_factor = 1.0 / float(torch.max(torch.abs(poses[:, :3, 3])))
        poses[:, :3, 3] *= scale_factor
        poses = poses.numpy()
        for i in range(len(poses)):
            traj_to_register.append(poses[i])

    else:
        traj_to_register = read_trajectory(traj_path)
        # with open("test.xyz","w") as file_object:
        #     for m in traj_to_register:
        #         # p = - m[:3,:3].T @ m[:3,3:]
        #         # p = p[:,0]
        #         p =  m[:3,-1]
        #         print("%f %f %f"%(p[0],p[1],p[2]),file=file_object)
    
    for i in range(len(traj_to_register)):
        c2w = torch.from_numpy(traj_to_register[i]).float()
        if c2w.shape == (3, 4):
            c2w = torch.cat([
                c2w,
                torch.tensor([[0, 0, 0, 1]]).float()
            ], dim=0)
        traj_to_register[i] = c2w # [4, 4]

    print(f'Trajectory loaded from {traj_path}, including {len(traj_to_register)} camera views.')
    return traj_to_register


if __name__ == "__main__":
    print('Start culling...')
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--traj-path",
        type=str,
        required=True,
        help=
        "path to trajectory file. See `convert_to_logfile.py` to create this file.",
    )
    parser.add_argument(
        "--ply-path",
        type=str,
        required=True,
        help="path to reconstruction ply file",
    )
    args = parser.parse_args()

    estimate_c2w_list = get_traj(args.traj_path)

    # for TanksandTemples dataset
    H, W = 1080, 1920
    fx = 1163.8678928442187
    fy = 1172.793101201448
    cx = 962.3120628412543
    cy = 542.0667209577691
    far = 20.0

    mesher = Mesher(H, W, fx, fy, cx, cy, far, points_batch_size=5e5)
    # mesher = Mesher(H*2, W*2, fx*2, fy*2, cx*2, cy*2, far, points_batch_size=5e5)

    mesher(args.ply_path, estimate_c2w_list)

    print('Done!')