File size: 7,257 Bytes
84eee5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import random
import torch
import numpy as np
from .scene import GaussianModel
from .scene.dataset_readers import SceneInfo, getNerfppNorm
from .scene.cameras import Camera
from .ops import focal2fov, fov2focal
from .scene.gaussian_model import BasicPointCloud
from easydict import EasyDict as edict
from PIL import Image

from tqdm.auto import tqdm

def get_blank_gs_bundle(h, w):
    return {
        "camera_angle_x": focal2fov(torch.tensor([w], dtype=torch.float32), w),
        "W": w,
        "H": h,
        "pcd_points": None,
        "pcd_colors": None,
        'frames': [],
    }

def read_cameras_from_optimization_bundle(optimization_bundle, white_background: bool = False):
    cameras = []

    fovx = optimization_bundle["camera_angle_x"]
    frames = optimization_bundle["frames"]

    # we flip the x and y axis to move from PyTorch3D's coordinate system to COLMAP's
    coordinate_system_transform = np.array([-1, -1, 1])

    for idx, frame in enumerate(frames):
        c2w = np.array(frame["transform_matrix"])
        c2w[:3, :3] = c2w[:3, :3] * coordinate_system_transform

        # get the world-to-camera transform and set R, T
        w2c = np.linalg.inv(c2w)
        R = np.transpose(w2c[:3, :3])  # R is stored transposed due to 'glm' in CUDA code
        T = c2w[-1, :3] * coordinate_system_transform

        image = frame["image"]

        im_data = np.array(image.convert("RGBA"))

        bg = np.array([1,1,1]) if white_background else np.array([0, 0, 0])

        norm_data = im_data / 255.0
        arr = norm_data[:,:,:3] * norm_data[:, :, 3:4] + bg * (1 - norm_data[:, :, 3:4])
        image = Image.fromarray(np.array(arr*255.0, dtype=np.byte), "RGB")

        fovy = focal2fov(fov2focal(fovx, image.size[0]), image.size[1])
        FovY = fovy 
        FovX = fovx

        image = torch.Tensor(arr).permute(2,0,1)

        cameras.append(Camera(colmap_id=idx, R=R, T=T, FoVx=FovX, FoVy=FovY, image=image, mask=frame.get("mask", None),
                                gt_alpha_mask=None, image_name='', uid=idx, data_device='cuda'))

    return cameras

class Scene:
    gaussians: GaussianModel

    def __init__(self, traindata, gaussians: GaussianModel, gs_options, shuffle: bool = True):
        self.traindata = traindata
        self.gaussians = gaussians
        
        train_cameras = read_cameras_from_optimization_bundle(traindata, gs_options.white_background)
        
        nerf_normalization = getNerfppNorm(train_cameras)

        pcd = BasicPointCloud(points=traindata['pcd_points'], colors=traindata['pcd_colors'], normals=None)
        
        scene_info = SceneInfo(point_cloud=pcd,
                               train_cameras=train_cameras,
                               test_cameras=[],
                               nerf_normalization=nerf_normalization,
                               ply_path='')

        if shuffle:
            random.shuffle(scene_info.train_cameras)  # Multi-res consistent random shuffling

        self.cameras_extent = scene_info.nerf_normalization["radius"]

        self.train_cameras = scene_info.train_cameras

        bg_color = np.array([1,1,1]) if gs_options.white_background else np.array([0, 0, 0])
        self.background = torch.tensor(bg_color, dtype=torch.float32, device='cuda')

        self.gaussians.create_from_pcd(scene_info.point_cloud, self.cameras_extent)
        self.gaussians.training_setup(gs_options)

    def getTrainCameras(self):
        return self.train_cameras
    
    def getPresetCameras(self, preset):
        assert preset in self.preset_cameras
        return self.preset_cameras[preset]

def run_gaussian_splatting(scene, gs_optimization_bundle):
    torch.cuda.empty_cache()

    return scene

    from random import randint
    from .gaussian_renderer import render as gs_render
    from .scene.utils.loss_utils import l1_loss, ssim

    pbar = tqdm(range(1, gs_options.iterations + 1))
    for iteration in pbar:
        scene.gaussians.update_learning_rate(iteration)

        # Every 1000 its we increase the levels of SH up to a maximum degree
        if iteration % 1000 == 0:
            scene.gaussians.oneupSHdegree()

        # Pick a random Camera
        random_idx = randint(0, len(gs_optimization_bundle["frames"])-1)
        viewpoint_cam = scene.getTrainCameras()[random_idx]

        # Render
        render_pkg = gs_render(viewpoint_cam, scene.gaussians, gs_options, scene.background)
        image, viewspace_point_tensor, visibility_filter, radii = (
            render_pkg['render'], render_pkg['viewspace_points'], render_pkg['visibility_filter'], render_pkg['radii'])

        # Loss
        gt_image = viewpoint_cam.original_image.cuda()
        Ll1 = l1_loss(image, gt_image, reduce=False)
        loss = (1.0 - gs_options.lambda_dssim) * Ll1

        if viewpoint_cam.mask is not None:
            mask = torch.from_numpy(viewpoint_cam.mask).to(loss.device)
        else:
            mask = 1

        loss = (loss * mask).mean()
        loss = loss + gs_options.lambda_dssim * (1.0 - ssim(image, gt_image))
        loss.backward()

        pbar.set_description(f"Loss: {loss.item():.4f}")

        with torch.no_grad():
            # Densification
            if iteration < gs_options.densify_until_iter:
                # Keep track of max radii in image-space for pruning
                scene.gaussians.max_radii2D[visibility_filter] = torch.max(
                    scene.gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
                scene.gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter)

                if iteration > gs_options.densify_from_iter and iteration % gs_options.densification_interval == 0:
                    size_threshold = 20 if iteration > gs_options.opacity_reset_interval else None
                    scene.gaussians.densify_and_prune(
                        gs_options.densify_grad_threshold, 0.005, scene.cameras_extent, size_threshold)
                
                if (iteration % gs_options.opacity_reset_interval == 0 
                    or (gs_options.white_background and iteration == gs_options.densify_from_iter)
                ):
                    scene.gaussians.reset_opacity()

            # Optimizer step
            if iteration < gs_options.iterations:
                scene.gaussians.optimizer.step()
                scene.gaussians.optimizer.zero_grad(set_to_none = True)

    return scene

gs_options = edict({
    "sh_degree": 3,
    "images": "images",
    "resolution": -1,
    "white_background": False,
    "data_device": "cuda",
    "eval": False,
    "use_depth": False,
    "iterations": 0,#250,
    "position_lr_init": 0.00016,
    "position_lr_final": 0.0000016,
    "position_lr_delay_mult": 0.01,
    "position_lr_max_steps": 2990,
    "feature_lr": 0.0,#0.0025,
    "opacity_lr": 0.0,#0.05,
    "scaling_lr": 0.0,#0.005,
    "rotation_lr": 0.0,#0.001,
    "percent_dense": 0.01,
    "lambda_dssim": 0.2,
    "densification_interval": 100,
    "opacity_reset_interval": 3000,
    "densify_from_iter": 10_000,
    "densify_until_iter": 15_000,
    "densify_grad_threshold": 0.0002,
    "convert_SHs_python": False,
    "compute_cov3D_python": False,
    "debug": False,
})