Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,257 Bytes
84eee5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import random
import torch
import numpy as np
from .scene import GaussianModel
from .scene.dataset_readers import SceneInfo, getNerfppNorm
from .scene.cameras import Camera
from .ops import focal2fov, fov2focal
from .scene.gaussian_model import BasicPointCloud
from easydict import EasyDict as edict
from PIL import Image
from tqdm.auto import tqdm
def get_blank_gs_bundle(h, w):
return {
"camera_angle_x": focal2fov(torch.tensor([w], dtype=torch.float32), w),
"W": w,
"H": h,
"pcd_points": None,
"pcd_colors": None,
'frames': [],
}
def read_cameras_from_optimization_bundle(optimization_bundle, white_background: bool = False):
cameras = []
fovx = optimization_bundle["camera_angle_x"]
frames = optimization_bundle["frames"]
# we flip the x and y axis to move from PyTorch3D's coordinate system to COLMAP's
coordinate_system_transform = np.array([-1, -1, 1])
for idx, frame in enumerate(frames):
c2w = np.array(frame["transform_matrix"])
c2w[:3, :3] = c2w[:3, :3] * coordinate_system_transform
# get the world-to-camera transform and set R, T
w2c = np.linalg.inv(c2w)
R = np.transpose(w2c[:3, :3]) # R is stored transposed due to 'glm' in CUDA code
T = c2w[-1, :3] * coordinate_system_transform
image = frame["image"]
im_data = np.array(image.convert("RGBA"))
bg = np.array([1,1,1]) if white_background else np.array([0, 0, 0])
norm_data = im_data / 255.0
arr = norm_data[:,:,:3] * norm_data[:, :, 3:4] + bg * (1 - norm_data[:, :, 3:4])
image = Image.fromarray(np.array(arr*255.0, dtype=np.byte), "RGB")
fovy = focal2fov(fov2focal(fovx, image.size[0]), image.size[1])
FovY = fovy
FovX = fovx
image = torch.Tensor(arr).permute(2,0,1)
cameras.append(Camera(colmap_id=idx, R=R, T=T, FoVx=FovX, FoVy=FovY, image=image, mask=frame.get("mask", None),
gt_alpha_mask=None, image_name='', uid=idx, data_device='cuda'))
return cameras
class Scene:
gaussians: GaussianModel
def __init__(self, traindata, gaussians: GaussianModel, gs_options, shuffle: bool = True):
self.traindata = traindata
self.gaussians = gaussians
train_cameras = read_cameras_from_optimization_bundle(traindata, gs_options.white_background)
nerf_normalization = getNerfppNorm(train_cameras)
pcd = BasicPointCloud(points=traindata['pcd_points'], colors=traindata['pcd_colors'], normals=None)
scene_info = SceneInfo(point_cloud=pcd,
train_cameras=train_cameras,
test_cameras=[],
nerf_normalization=nerf_normalization,
ply_path='')
if shuffle:
random.shuffle(scene_info.train_cameras) # Multi-res consistent random shuffling
self.cameras_extent = scene_info.nerf_normalization["radius"]
self.train_cameras = scene_info.train_cameras
bg_color = np.array([1,1,1]) if gs_options.white_background else np.array([0, 0, 0])
self.background = torch.tensor(bg_color, dtype=torch.float32, device='cuda')
self.gaussians.create_from_pcd(scene_info.point_cloud, self.cameras_extent)
self.gaussians.training_setup(gs_options)
def getTrainCameras(self):
return self.train_cameras
def getPresetCameras(self, preset):
assert preset in self.preset_cameras
return self.preset_cameras[preset]
def run_gaussian_splatting(scene, gs_optimization_bundle):
torch.cuda.empty_cache()
return scene
from random import randint
from .gaussian_renderer import render as gs_render
from .scene.utils.loss_utils import l1_loss, ssim
pbar = tqdm(range(1, gs_options.iterations + 1))
for iteration in pbar:
scene.gaussians.update_learning_rate(iteration)
# Every 1000 its we increase the levels of SH up to a maximum degree
if iteration % 1000 == 0:
scene.gaussians.oneupSHdegree()
# Pick a random Camera
random_idx = randint(0, len(gs_optimization_bundle["frames"])-1)
viewpoint_cam = scene.getTrainCameras()[random_idx]
# Render
render_pkg = gs_render(viewpoint_cam, scene.gaussians, gs_options, scene.background)
image, viewspace_point_tensor, visibility_filter, radii = (
render_pkg['render'], render_pkg['viewspace_points'], render_pkg['visibility_filter'], render_pkg['radii'])
# Loss
gt_image = viewpoint_cam.original_image.cuda()
Ll1 = l1_loss(image, gt_image, reduce=False)
loss = (1.0 - gs_options.lambda_dssim) * Ll1
if viewpoint_cam.mask is not None:
mask = torch.from_numpy(viewpoint_cam.mask).to(loss.device)
else:
mask = 1
loss = (loss * mask).mean()
loss = loss + gs_options.lambda_dssim * (1.0 - ssim(image, gt_image))
loss.backward()
pbar.set_description(f"Loss: {loss.item():.4f}")
with torch.no_grad():
# Densification
if iteration < gs_options.densify_until_iter:
# Keep track of max radii in image-space for pruning
scene.gaussians.max_radii2D[visibility_filter] = torch.max(
scene.gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
scene.gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter)
if iteration > gs_options.densify_from_iter and iteration % gs_options.densification_interval == 0:
size_threshold = 20 if iteration > gs_options.opacity_reset_interval else None
scene.gaussians.densify_and_prune(
gs_options.densify_grad_threshold, 0.005, scene.cameras_extent, size_threshold)
if (iteration % gs_options.opacity_reset_interval == 0
or (gs_options.white_background and iteration == gs_options.densify_from_iter)
):
scene.gaussians.reset_opacity()
# Optimizer step
if iteration < gs_options.iterations:
scene.gaussians.optimizer.step()
scene.gaussians.optimizer.zero_grad(set_to_none = True)
return scene
gs_options = edict({
"sh_degree": 3,
"images": "images",
"resolution": -1,
"white_background": False,
"data_device": "cuda",
"eval": False,
"use_depth": False,
"iterations": 0,#250,
"position_lr_init": 0.00016,
"position_lr_final": 0.0000016,
"position_lr_delay_mult": 0.01,
"position_lr_max_steps": 2990,
"feature_lr": 0.0,#0.0025,
"opacity_lr": 0.0,#0.05,
"scaling_lr": 0.0,#0.005,
"rotation_lr": 0.0,#0.001,
"percent_dense": 0.01,
"lambda_dssim": 0.2,
"densification_interval": 100,
"opacity_reset_interval": 3000,
"densify_from_iter": 10_000,
"densify_until_iter": 15_000,
"densify_grad_threshold": 0.0002,
"convert_SHs_python": False,
"compute_cov3D_python": False,
"debug": False,
})
|