Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,285 +1,30 @@
|
|
1 |
-
from fastapi import FastAPI
|
2 |
-
from
|
3 |
-
from
|
4 |
-
import torch
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
)
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
image: str # Base64 encoded image
|
32 |
-
model_name: str = "oasis500m" # Default to oasis model
|
33 |
-
|
34 |
-
class InferenceResponse(BaseModel):
|
35 |
-
predictions: List[Dict[str, Any]]
|
36 |
-
model_used: str
|
37 |
-
confidence_scores: List[float]
|
38 |
-
|
39 |
-
def load_models():
|
40 |
-
"""Load both models from local files"""
|
41 |
-
global oasis_model, oasis_processor, vit_model, vit_processor
|
42 |
-
|
43 |
-
try:
|
44 |
-
logger.info("Loading Oasis 500M model from local files...")
|
45 |
-
# Load Oasis model from local files
|
46 |
-
oasis_processor = AutoImageProcessor.from_pretrained("microsoft/oasis-500m")
|
47 |
-
oasis_model = AutoModelForImageClassification.from_pretrained(
|
48 |
-
"microsoft/oasis-500m",
|
49 |
-
local_files_only=False # Will download config but use local weights
|
50 |
-
)
|
51 |
-
|
52 |
-
# Load local weights if available
|
53 |
-
oasis_model_path = "/app/models/oasis500m.safetensors"
|
54 |
-
if os.path.exists(oasis_model_path):
|
55 |
-
logger.info("Loading Oasis weights from local file...")
|
56 |
-
from safetensors.torch import load_file
|
57 |
-
state_dict = load_file(oasis_model_path)
|
58 |
-
oasis_model.load_state_dict(state_dict, strict=False)
|
59 |
-
|
60 |
-
oasis_model.eval()
|
61 |
-
|
62 |
-
logger.info("Loading ViT-L-20 model from local files...")
|
63 |
-
# Load ViT model from local files
|
64 |
-
vit_processor = AutoImageProcessor.from_pretrained("google/vit-large-patch16-224")
|
65 |
-
vit_model = AutoModelForImageClassification.from_pretrained(
|
66 |
-
"google/vit-large-patch16-224",
|
67 |
-
local_files_only=False # Will download config but use local weights
|
68 |
-
)
|
69 |
-
|
70 |
-
# Load local weights if available
|
71 |
-
vit_model_path = "/app/models/vit-l-20.safetensors"
|
72 |
-
if os.path.exists(vit_model_path):
|
73 |
-
logger.info("Loading ViT weights from local file...")
|
74 |
-
from safetensors.torch import load_file
|
75 |
-
state_dict = load_file(vit_model_path)
|
76 |
-
vit_model.load_state_dict(state_dict, strict=False)
|
77 |
-
|
78 |
-
vit_model.eval()
|
79 |
-
|
80 |
-
logger.info("All models loaded successfully!")
|
81 |
-
|
82 |
-
except Exception as e:
|
83 |
-
logger.error(f"Error loading models: {e}")
|
84 |
-
raise e
|
85 |
-
|
86 |
-
@app.on_event("startup")
|
87 |
-
async def startup_event():
|
88 |
-
"""Load models when the application starts"""
|
89 |
-
load_models()
|
90 |
-
|
91 |
-
@app.get("/")
|
92 |
-
async def root():
|
93 |
-
"""Root endpoint with API information"""
|
94 |
-
return {
|
95 |
-
"message": "ChatGPT Oasis Model Inference API",
|
96 |
-
"version": "1.0.0",
|
97 |
-
"deployed_on": "Hugging Face Spaces (Docker)",
|
98 |
-
"available_models": ["oasis500m", "vit-l-20"],
|
99 |
-
"endpoints": {
|
100 |
-
"health": "/health",
|
101 |
-
"inference": "/inference",
|
102 |
-
"upload_inference": "/upload_inference",
|
103 |
-
"predict": "/predict"
|
104 |
-
},
|
105 |
-
"usage": {
|
106 |
-
"base64_inference": "POST /inference with JSON body containing 'image' (base64) and 'model_name'",
|
107 |
-
"file_upload": "POST /upload_inference with multipart form containing 'file' and optional 'model_name'",
|
108 |
-
"simple_predict": "POST /predict with file upload for quick inference"
|
109 |
-
}
|
110 |
-
}
|
111 |
-
|
112 |
-
@app.get("/health")
|
113 |
-
async def health_check():
|
114 |
-
"""Health check endpoint"""
|
115 |
-
models_status = {
|
116 |
-
"oasis500m": oasis_model is not None,
|
117 |
-
"vit-l-20": vit_model is not None
|
118 |
-
}
|
119 |
-
|
120 |
-
# Check if model files exist
|
121 |
-
model_files = {
|
122 |
-
"oasis500m": os.path.exists("/app/models/oasis500m.safetensors"),
|
123 |
-
"vit-l-20": os.path.exists("/app/models/vit-l-20.safetensors")
|
124 |
-
}
|
125 |
-
|
126 |
-
return {
|
127 |
-
"status": "healthy",
|
128 |
-
"models_loaded": models_status,
|
129 |
-
"model_files_present": model_files,
|
130 |
-
"deployment": "huggingface-spaces-docker"
|
131 |
-
}
|
132 |
-
|
133 |
-
def process_image_with_model(image: Image.Image, model_name: str):
|
134 |
-
"""Process image with the specified model"""
|
135 |
-
if model_name == "oasis500m":
|
136 |
-
if oasis_model is None or oasis_processor is None:
|
137 |
-
raise HTTPException(status_code=500, detail="Oasis model not loaded")
|
138 |
-
|
139 |
-
inputs = oasis_processor(images=image, return_tensors="pt")
|
140 |
-
with torch.no_grad():
|
141 |
-
outputs = oasis_model(**inputs)
|
142 |
-
logits = outputs.logits
|
143 |
-
probabilities = F.softmax(logits, dim=-1)
|
144 |
-
|
145 |
-
# Get top predictions
|
146 |
-
top_probs, top_indices = torch.topk(probabilities, 5)
|
147 |
-
|
148 |
-
predictions = []
|
149 |
-
for i in range(top_indices.shape[1]):
|
150 |
-
pred = {
|
151 |
-
"label": oasis_model.config.id2label[top_indices[0][i].item()],
|
152 |
-
"confidence": top_probs[0][i].item()
|
153 |
-
}
|
154 |
-
predictions.append(pred)
|
155 |
-
|
156 |
-
return predictions
|
157 |
-
|
158 |
-
elif model_name == "vit-l-20":
|
159 |
-
if vit_model is None or vit_processor is None:
|
160 |
-
raise HTTPException(status_code=500, detail="ViT model not loaded")
|
161 |
-
|
162 |
-
inputs = vit_processor(images=image, return_tensors="pt")
|
163 |
-
with torch.no_grad():
|
164 |
-
outputs = vit_model(**inputs)
|
165 |
-
logits = outputs.logits
|
166 |
-
probabilities = F.softmax(logits, dim=-1)
|
167 |
-
|
168 |
-
# Get top predictions
|
169 |
-
top_probs, top_indices = torch.topk(probabilities, 5)
|
170 |
-
|
171 |
-
predictions = []
|
172 |
-
for i in range(top_indices.shape[1]):
|
173 |
-
pred = {
|
174 |
-
"label": vit_model.config.id2label[top_indices[0][i].item()],
|
175 |
-
"confidence": top_probs[0][i].item()
|
176 |
-
}
|
177 |
-
predictions.append(pred)
|
178 |
-
|
179 |
-
return predictions
|
180 |
-
|
181 |
-
else:
|
182 |
-
raise HTTPException(status_code=400, detail=f"Unknown model: {model_name}")
|
183 |
-
|
184 |
-
@app.post("/inference", response_model=InferenceResponse)
|
185 |
-
async def inference(request: InferenceRequest):
|
186 |
-
"""Inference endpoint using base64 encoded image"""
|
187 |
-
try:
|
188 |
-
import base64
|
189 |
-
|
190 |
-
# Decode base64 image
|
191 |
-
image_data = base64.b64decode(request.image)
|
192 |
-
image = Image.open(io.BytesIO(image_data)).convert('RGB')
|
193 |
-
|
194 |
-
# Process with model
|
195 |
-
predictions = process_image_with_model(image, request.model_name)
|
196 |
-
|
197 |
-
# Extract confidence scores
|
198 |
-
confidence_scores = [pred["confidence"] for pred in predictions]
|
199 |
-
|
200 |
-
return InferenceResponse(
|
201 |
-
predictions=predictions,
|
202 |
-
model_used=request.model_name,
|
203 |
-
confidence_scores=confidence_scores
|
204 |
-
)
|
205 |
-
|
206 |
-
except Exception as e:
|
207 |
-
logger.error(f"Inference error: {e}")
|
208 |
-
raise HTTPException(status_code=500, detail=str(e))
|
209 |
-
|
210 |
-
@app.post("/upload_inference", response_model=InferenceResponse)
|
211 |
-
async def upload_inference(
|
212 |
-
file: UploadFile = File(...),
|
213 |
-
model_name: str = "oasis500m"
|
214 |
-
):
|
215 |
-
"""Inference endpoint using file upload"""
|
216 |
-
try:
|
217 |
-
# Validate file type
|
218 |
-
if not file.content_type.startswith('image/'):
|
219 |
-
raise HTTPException(status_code=400, detail="File must be an image")
|
220 |
-
|
221 |
-
# Read and process image
|
222 |
-
image_data = await file.read()
|
223 |
-
image = Image.open(io.BytesIO(image_data)).convert('RGB')
|
224 |
-
|
225 |
-
# Process with model
|
226 |
-
predictions = process_image_with_model(image, model_name)
|
227 |
-
|
228 |
-
# Extract confidence scores
|
229 |
-
confidence_scores = [pred["confidence"] for pred in predictions]
|
230 |
-
|
231 |
-
return InferenceResponse(
|
232 |
-
predictions=predictions,
|
233 |
-
model_used=model_name,
|
234 |
-
confidence_scores=confidence_scores
|
235 |
-
)
|
236 |
-
|
237 |
-
except Exception as e:
|
238 |
-
logger.error(f"Upload inference error: {e}")
|
239 |
-
raise HTTPException(status_code=500, detail=str(e))
|
240 |
-
|
241 |
-
@app.get("/models")
|
242 |
-
async def list_models():
|
243 |
-
"""List available models and their status"""
|
244 |
-
return {
|
245 |
-
"available_models": [
|
246 |
-
{
|
247 |
-
"name": "oasis500m",
|
248 |
-
"description": "Oasis 500M vision model",
|
249 |
-
"loaded": oasis_model is not None,
|
250 |
-
"file_present": os.path.exists("/app/models/oasis500m.safetensors")
|
251 |
-
},
|
252 |
-
{
|
253 |
-
"name": "vit-l-20",
|
254 |
-
"description": "Vision Transformer Large model",
|
255 |
-
"loaded": vit_model is not None,
|
256 |
-
"file_present": os.path.exists("/app/models/vit-l-20.safetensors")
|
257 |
-
}
|
258 |
-
]
|
259 |
-
}
|
260 |
-
|
261 |
-
# Hugging Face Spaces specific endpoint for Gradio compatibility
|
262 |
-
@app.post("/predict")
|
263 |
-
async def predict(file: UploadFile = File(...)):
|
264 |
-
"""Simple prediction endpoint for Hugging Face Spaces integration"""
|
265 |
-
try:
|
266 |
-
# Validate file type
|
267 |
-
if not file.content_type.startswith('image/'):
|
268 |
-
raise HTTPException(status_code=400, detail="File must be an image")
|
269 |
-
|
270 |
-
# Read and process image
|
271 |
-
image_data = await file.read()
|
272 |
-
image = Image.open(io.BytesIO(image_data)).convert('RGB')
|
273 |
-
|
274 |
-
# Process with default model (oasis500m)
|
275 |
-
predictions = process_image_with_model(image, "oasis500m")
|
276 |
-
|
277 |
-
# Return simplified format for Gradio
|
278 |
-
return {
|
279 |
-
"predictions": predictions[:3], # Top 3 predictions
|
280 |
-
"model_used": "oasis500m"
|
281 |
-
}
|
282 |
-
|
283 |
-
except Exception as e:
|
284 |
-
logger.error(f"Predict error: {e}")
|
285 |
-
raise HTTPException(status_code=500, detail=str(e))
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
from pydantic import BaseModel
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
import torch
|
5 |
+
|
6 |
+
app = FastAPI()
|
7 |
+
|
8 |
+
# Load model & tokenizer
|
9 |
+
MODEL_PATH = "./" # since it's inside the same repo
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
|
11 |
+
model = AutoModelForCausalLM.from_pretrained(
|
12 |
+
MODEL_PATH,
|
13 |
+
torch_dtype=torch.float16,
|
14 |
+
device_map="auto"
|
15 |
+
)
|
16 |
+
|
17 |
+
class RequestBody(BaseModel):
|
18 |
+
prompt: str
|
19 |
+
max_length: int = 100
|
20 |
+
|
21 |
+
@app.post("/generate")
|
22 |
+
def generate_text(req: RequestBody):
|
23 |
+
inputs = tokenizer(req.prompt, return_tensors="pt").to(model.device)
|
24 |
+
outputs = model.generate(**inputs, max_length=req.max_length)
|
25 |
+
text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
26 |
+
return {"generated_text": text}
|
27 |
+
|
28 |
+
@app.get("/")
|
29 |
+
def root():
|
30 |
+
return {"message": "FastAPI Hugging Face Space is running!"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|