Spaces:
Running
Running
Upload 5 files
Browse files- .gitattributes +1 -0
- check.ipynb +0 -0
- medical_faiss_index/index.faiss +3 -0
- medical_faiss_index/index.pkl +3 -0
- requirements.txt +7 -0
- streamlitapp.py +65 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
medical_faiss_index/index.faiss filter=lfs diff=lfs merge=lfs -text
|
check.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
medical_faiss_index/index.faiss
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f279feeaec484136ccbf7a2ae999f1eb5cc1d597db08e31bd432fa7cc86de9c
|
3 |
+
size 12602925
|
medical_faiss_index/index.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8a74b92117a85caa468fbdae68669546319387f579bf3d03b8bcf85a7281284a
|
3 |
+
size 4653572
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
langchain
|
3 |
+
langchain_groq
|
4 |
+
sentence-transformers
|
5 |
+
faiss-cpu
|
6 |
+
python-dotenv
|
7 |
+
langchain-community
|
streamlitapp.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from langchain.prompts import PromptTemplate
|
3 |
+
from langchain_groq import ChatGroq
|
4 |
+
from langchain.vectorstores import FAISS
|
5 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
6 |
+
import os
|
7 |
+
from dotenv import load_dotenv
|
8 |
+
load_dotenv()
|
9 |
+
|
10 |
+
def initialize_groq_llm():
|
11 |
+
return ChatGroq(
|
12 |
+
groq_api_key=os.getenv("GROQ_API_KEY"),
|
13 |
+
model_name="llama-3.3-70b-versatile",
|
14 |
+
max_tokens=512
|
15 |
+
)
|
16 |
+
|
17 |
+
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
18 |
+
faiss_index = FAISS.load_local(
|
19 |
+
"medical_faiss_index",
|
20 |
+
embedding_model,
|
21 |
+
allow_dangerous_deserialization=True
|
22 |
+
)
|
23 |
+
|
24 |
+
prompt_template = """
|
25 |
+
You are a healthcare professional built by Parthib, and you can assist users with health-related issues.
|
26 |
+
Use the following pieces of information along with the LLM's knowledge to answer the user's question about diseases or healthcare.
|
27 |
+
If the following pieces provide some information, combine it with your existing knowledge to craft the most accurate and helpful response.
|
28 |
+
Include relevant details such as home remedies, medications, and other necessary actions in a clear, point-wise manner for quick readability.
|
29 |
+
If any other related questions arise, just say, "I am a healthcare professional."
|
30 |
+
If you don't know the answer, just say that you don't know. Don't try to make up an answer.
|
31 |
+
|
32 |
+
Context: {context}
|
33 |
+
Question: {question}
|
34 |
+
|
35 |
+
Only return the helpful answer below and nothing else.
|
36 |
+
Helpful answer:
|
37 |
+
"""
|
38 |
+
|
39 |
+
def generate_response(question):
|
40 |
+
|
41 |
+
retriever = faiss_index.as_retriever(search_kwargs={'k': 1})
|
42 |
+
docs = retriever.get_relevant_documents(question)
|
43 |
+
context = "\n".join([doc.page_content for doc in docs])
|
44 |
+
|
45 |
+
llm = initialize_groq_llm()
|
46 |
+
prompt = PromptTemplate(
|
47 |
+
input_variables=["context", "question"],
|
48 |
+
template=prompt_template
|
49 |
+
)
|
50 |
+
formatted_prompt = prompt.format(context=context, question=question)
|
51 |
+
|
52 |
+
response = llm.invoke(formatted_prompt)
|
53 |
+
return response.content
|
54 |
+
|
55 |
+
st.set_page_config(page_title="HealthCare ChatBot", page_icon="🤖", layout="centered")
|
56 |
+
st.header("HealthCare ChatBot 🤖")
|
57 |
+
|
58 |
+
user_input = st.text_input("Ask a Healthcare related question:", "")
|
59 |
+
st.button("Generate Response")
|
60 |
+
st.spinner('Processing')
|
61 |
+
|
62 |
+
if user_input:
|
63 |
+
user_input = user_input.lower().strip()
|
64 |
+
response = generate_response(user_input)
|
65 |
+
st.write(f"Response: {response}")
|