# app.py — HF Space: hybrid text+image RAG demo (Persian-ready) import os, json from dataclasses import dataclass from typing import List, Optional, Tuple import gradio as gr import numpy as np import faiss from PIL import Image from huggingface_hub import snapshot_download from sentence_transformers import SentenceTransformer import torch from transformers import CLIPModel, CLIPProcessor # ========= CONFIG (override in Space → Settings → Variables) ========= TEXT_MODEL_REPO = os.environ.get("TEXT_MODEL_REPO", "mamathew/text-ft-food-rag") CLIP_MODEL_REPO = os.environ.get("CLIP_MODEL_REPO", "mamathew/clip-ft-food-rag") DATASET_REPO = os.environ.get("DATASET_REPO", "mamathew/food-rag-index") # Inference API chat model (Gemma IT by default). LLM_ID = os.environ.get("LLM_ID", "google/gemma-2-2b-it") # ===================================================================== DEVICE = "cuda" if torch.cuda.is_available() else "cpu" # ---- dataset snapshot (FAISS + metas + optionally images/) ---- DATA_DIR = snapshot_download(repo_id=DATASET_REPO, repo_type="dataset") def read_jsonl(path: str): out = [] with open(path, "r", encoding="utf-8") as f: for line in f: line = line.strip() if line: out.append(json.loads(line)) return out # Load metas & FAISS TEXT_META = read_jsonl(os.path.join(DATA_DIR, "text_meta.jsonl")) IMAGE_META = read_jsonl(os.path.join(DATA_DIR, "image_meta.jsonl")) T_INDEX = faiss.read_index(os.path.join(DATA_DIR, "faiss_text.bin")) I_INDEX = faiss.read_index(os.path.join(DATA_DIR, "faiss_image.bin")) # Load encoders text_enc = SentenceTransformer(TEXT_MODEL_REPO, device=DEVICE) clip_model = CLIPModel.from_pretrained(CLIP_MODEL_REPO).to(DEVICE) clip_proc = CLIPProcessor.from_pretrained(CLIP_MODEL_REPO) # Inference API client (chat-first, with fallback) try: from huggingface_hub import InferenceClient HF_TOKEN = os.environ.get("HF_TOKEN") # set in Space → Settings → Repository secrets client = InferenceClient(model=LLM_ID, token=HF_TOKEN) if HF_TOKEN else InferenceClient(model=LLM_ID) except Exception: client = None # ---------------------- utils & dataclasses ---------------------- from PIL import Image def _resolve_path(rel_or_abs: str) -> str: # If relative, make it under the dataset snapshot root p = rel_or_abs if os.path.isabs(rel_or_abs) else os.path.join(DATA_DIR, rel_or_abs) # Resolve symlinks to a canonical path (helps in HF cache) return os.path.realpath(p) def _open_image_safe(path: str): try: return Image.open(path).convert("RGB") except Exception: return None def normalize_fa(s: str) -> str: if not s: return s return (s.replace("ي","ی").replace("ك","ک").replace("\u200c"," ").strip()) def _truncate(s: str, max_chars: int = 1200) -> str: if not s: return "" s = s.strip().replace("\r", " ") return s[:max_chars] def _get_meta_text(m: dict) -> Optional[str]: for k in ("text","content","passage","body","chunk","article","description"): if m.get(k): return m[k] p = m.get("path") or m.get("filepath") if p: fp = p if os.path.isabs(p) else os.path.join(DATA_DIR, p) if os.path.exists(fp): try: with open(fp, "r", encoding="utf-8") as f: return f.read() except: pass return None @dataclass class Pair: rank: int idx: int doc_id: str title: Optional[str] score: float image_path: Optional[str] text: Optional[str] = None tscore: Optional[float] = None iscore: Optional[float] = None hscore: Optional[float] = None @dataclass class ImgHit: rank: int idx: int id: Optional[str] title: Optional[str] caption: Optional[str] score: float image_path: Optional[str] def _pair_from_idx(idx: int, score: float, rank: int) -> Pair: m = TEXT_META[idx] img_path = IMAGE_META[idx].get("image_path") if idx < len(IMAGE_META) else None return Pair( rank=rank, idx=idx, doc_id=m.get("id"), title=m.get("title"), score=float(score), image_path=img_path, text=_get_meta_text(m) ) def _pair_from_image_idx(idx: int, score: float, rank: int) -> ImgHit: m = IMAGE_META[idx] return ImgHit( rank=rank, idx=idx, id=m.get("id"), title=m.get("title") or m.get("name"), caption=m.get("caption") or m.get("alt"), score=float(score), image_path=m.get("image_path"), ) # ---------------------- retrieval funcs ---------------------- def search_text(q: str, topk: int = 10) -> List[Pair]: q = normalize_fa(q) qv = text_enc.encode([q], convert_to_numpy=True, normalize_embeddings=True).astype("float32") D, I = T_INDEX.search(qv, topk) out = [] for r, (i, s) in enumerate(zip(I[0].tolist(), D[0].tolist()), start=1): if i < 0: continue out.append(_pair_from_idx(i, s, r)) return out def search_image(img: Image.Image, topk: int = 10) -> List[Pair]: inputs = clip_proc(images=[img.convert("RGB")], return_tensors="pt").to(DEVICE) with torch.no_grad(): qv = clip_model.get_image_features(**inputs) qv = torch.nn.functional.normalize(qv, dim=1).float().cpu().numpy().astype(np.float32) D, I = I_INDEX.search(qv, topk) out = [] for r, (i, s) in enumerate(zip(I[0].tolist(), D[0].tolist()), start=1): if i < 0: continue out.append(_pair_from_idx(i, s, r)) return out def search_image_by_text(q: str, topk: int = 8) -> List[ImgHit]: q = normalize_fa(q) inputs = clip_proc(text=[q], return_tensors="pt").to(DEVICE) with torch.no_grad(): qv = clip_model.get_text_features(**inputs) qv = torch.nn.functional.normalize(qv, dim=1).float().cpu().numpy().astype(np.float32) D, I = I_INDEX.search(qv, topk) out = [] for r, (i, s) in enumerate(zip(I[0].tolist(), D[0].tolist()), start=1): if i < 0: continue out.append(_pair_from_image_idx(i, s, r)) return out def _normalize_scores(score_dict): if not score_dict: return {} vals = list(score_dict.values()) mn, mx = min(vals), max(vals) if mx - mn < 1e-9: return {k: 0.5 for k in score_dict} return {k: (v - mn) / (mx - mn) for k, v in score_dict.items()} def _topk_dict(D, I): out = {} for i, s in zip(I[0].tolist(), D[0].tolist()): if i >= 0: out[i] = float(s) return out def hybrid_search(question: Optional[str], image: Optional[Image.Image], topk: int, alpha_image: float): # alpha_image in [0,1]: 0 -> pure text ; 1 -> pure image t_scores = {} if question and question.strip(): q = normalize_fa(question) qv = text_enc.encode([q], convert_to_numpy=True, normalize_embeddings=True).astype("float32") D_t, I_t = T_INDEX.search(qv, max(topk, 20)) t_scores = _topk_dict(D_t, I_t) i_scores = {} if image is not None: inputs = clip_proc(images=[image.convert("RGB")], return_tensors="pt").to(DEVICE) with torch.no_grad(): qv = clip_model.get_image_features(**inputs) qv = torch.nn.functional.normalize(qv, dim=1).float().cpu().numpy().astype(np.float32) D_i, I_i = I_INDEX.search(qv, max(topk, 20)) i_scores = _topk_dict(D_i, I_i) keys = set(t_scores) | set(i_scores) tN = _normalize_scores(t_scores) iN = _normalize_scores(i_scores) hybrid = {k: (1.0 - alpha_image) * tN.get(k, 0.0) + alpha_image * iN.get(k, 0.0) for k in keys} sorted_idxs = sorted(hybrid.items(), key=lambda kv: kv[1], reverse=True)[:topk] pairs = [] for r, (idx, h) in enumerate(sorted_idxs, start=1): m = TEXT_META[idx] img_path = IMAGE_META[idx].get("image_path") if idx < len(IMAGE_META) else None pairs.append(Pair( rank=r, idx=idx, doc_id=m.get("id"), title=m.get("title"), score=h, image_path=img_path, text=_get_meta_text(m), tscore=t_scores.get(idx), iscore=i_scores.get(idx), hscore=h )) return pairs # ---------------------- LLM prompt & call ---------------------- def build_prompt(question: str, ctx: List[Pair]) -> str: lines = [ "از زمینهٔ زیر استفاده کن و به فارسی پاسخ بده. اگر پاسخ در زمینه نبود، بگو «نمی‌دانم».", "", "### زمینه:" ] for p in ctx: snippet = _truncate(p.text or "") lines.append( f"- عنوان: {p.title or '—'} (id={p.doc_id}, score={p.hscore if p.hscore is not None else p.score:.3f})\n" f" متن: {snippet if snippet else '—'}" ) lines.append(f"\n### پرسش: {question}\n### پاسخ:") return "\n".join(lines) def call_llm(prompt: str) -> str: if client is None: return "(LLM not configured)\n\n" + prompt # Prefer chat (Gemma IT & many instruct models are conversational) try: resp = client.chat_completion( messages=[ {"role": "system", "content": ( "You are a helpful assistant. Use the provided context to answer in Persian; " "if it's not in the context, say you don't know." )}, {"role": "user", "content": prompt}, ], max_tokens=256, temperature=0.2, ) return resp.choices[0].message.content.strip() except Exception as e_chat: # Fallback to text-generation if the model supports it try: out = client.text_generation( prompt=prompt, max_new_tokens=256, temperature=0.2, do_sample=True, ) return out.strip() except Exception as e_text: return f"(LLM error: {e_chat} / {e_text})\n\n" + prompt # ---------------------- gallery helpers ---------------------- def display_gallery_pairs(pairs): items = [] for p in pairs: if not p.image_path: continue local_path = _resolve_path(p.image_path) if os.path.exists(local_path): img = _open_image_safe(local_path) if img is not None: caption = f"#{p.rank} — {p.title or ''}\nscore={(p.hscore if p.hscore is not None else p.score):.3f}" items.append((img, caption)) # PIL image instead of path return items def display_gallery_images(img_hits): items = [] for h in img_hits: if not h.image_path: continue local_path = _resolve_path(h.image_path) if os.path.exists(local_path): img = _open_image_safe(local_path) if img is not None: caption = f"#{h.rank} — {h.title or ''}\nscore={h.score:.3f}" items.append((img, caption)) # PIL image instead of path return items # ---------------------- main app logic ---------------------- def answer(question: str, image: Optional[Image.Image], topk: int, k_ctx: int, use_image: bool, alpha_image: float = 0.5): # HYBRID when an image is provided + checkbox is on; else text-only if use_image and image is not None: top_pairs = hybrid_search(question, image, topk=topk, alpha_image=alpha_image) else: top_pairs = search_text(question, topk=topk) # LLM ctx = top_pairs[:max(1, k_ctx)] prompt = build_prompt(question, ctx) gen = call_llm(prompt) # Gallery gallery = display_gallery_pairs(top_pairs) if not gallery and not (use_image and image is not None): # text-only path: still try text->image to show visuals img_hits = search_image_by_text(question, topk=min(8, topk)) gallery = display_gallery_images(img_hits) top_image = gallery[0][0] if gallery else None # Table def fmt(x): return "—" if x is None else f"{x:.3f}" table = [[p.rank, p.title or "", fmt(p.tscore), fmt(p.iscore), fmt(p.hscore or p.score), p.doc_id] for p in top_pairs] return gen, table, gallery, top_image # ---------------------- UI ---------------------- with gr.Blocks() as demo: gr.Markdown("# 🍜 RAG (متن + تصویر) — Hybrid Retrieval + Persian LLM") with gr.Row(): q = gr.Textbox(label="پرسش (Question)", placeholder="مثلاً: طرز تهیه هویج پلو") img = gr.Image(label="تصویر اختیاری (Optional image)", type="pil") with gr.Row(): topk = gr.Slider(1, 20, value=10, step=1, label="Top-K") kctx = gr.Slider(1, 10, value=4, step=1, label="K متن زمینه برای LLM") use_img = gr.Checkbox(label="Hybrid (از تصویر هم استفاده شود؟)", value=False) alpha = gr.Slider(0.0, 1.0, value=0.5, step=0.05, label="وزن تصویر در Hybrid") btn = gr.Button("اجرا (Run)") out_text = gr.Textbox(label="پاسخ (Answer)") out_table = gr.Dataframe(headers=["Rank", "Title", "Text S", "Image S", "Hybrid S", "Doc ID"], label="Top-K retrieval") out_gallery = gr.Gallery(label="تصاویر مرتبط (Image matches)", columns=5, height=240) out_img_top = gr.Image(label="Top image match") btn.click( answer, inputs=[q, img, topk, kctx, use_img, alpha], outputs=[out_text, out_table, out_gallery, out_img_top] ) ALLOWED = [ DATA_DIR, os.path.join(DATA_DIR, "data"), os.path.join(DATA_DIR, "data", "interim"), os.path.join(DATA_DIR, "data", "interim", "images_cache"), ] if __name__ == "__main__": demo.launch(allowed_paths=[os.path.realpath(p) for p in ALLOWED])