Spaces:
Running
Running
File size: 11,145 Bytes
d48ef09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import tensorflow as tf
from tensorflow.keras.layers import ( # type: ignore
Input, Dense, GRU, LSTM, Bidirectional, MultiHeadAttention, BatchNormalization,
Dropout, Concatenate, TimeDistributed, RepeatVector, Add, Lambda, LayerNormalization, GaussianNoise, Reshape
)
from tensorflow.keras.models import Model # type: ignore
from tensorflow.keras.regularizers import l2 # type: ignore
# 自定义 Transformer Encoder 层
# 使用自定义层替代 Lambda 层
@tf.keras.utils.register_keras_serializable(package="Custom", name="ExpandDimension")
class ExpandDimension(tf.keras.layers.Layer):
def call(self, inputs):
return tf.expand_dims(inputs, axis=1)
@tf.keras.utils.register_keras_serializable(package="Custom", name="ConcatenateTimesteps")
class ConcatenateTimesteps(tf.keras.layers.Layer):
def call(self, inputs):
return tf.concat(inputs, axis=1)
@tf.keras.utils.register_keras_serializable(package="Custom", name="TransformerEncoder")
class TransformerEncoder(tf.keras.layers.Layer):
def __init__(self, num_heads, embed_dim, ff_dim, rate=0.1, **kwargs):
super(TransformerEncoder, self).__init__(**kwargs)
self.attention = MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim) # 将 key_dim 设置为 embed_dim
self.ffn = tf.keras.Sequential(
[Dense(ff_dim, activation="relu"), Dense(embed_dim)]
)
self.layernorm1 = LayerNormalization(epsilon=1e-6)
self.layernorm2 = LayerNormalization(epsilon=1e-6)
self.dropout1 = Dropout(rate)
self.dropout2 = Dropout(rate)
def build(self, input_shape):
query_shape = input_shape # 输入形状为 (batch_size, seq_len, embed_dim)
key_shape = input_shape # 假定 key 和 query 形状一致
value_shape = input_shape # 假定 value 和 key 形状一致
# 调用 attention 的 build 方法
self.attention.build(query_shape, value_shape)
# 构建 FFN 和归一化层
self.ffn.build(input_shape)
self.layernorm1.build(input_shape)
self.layernorm2.build(input_shape)
self.built = True
def call(self, inputs, training):
attn_output, attn_weights = self.attention(inputs, inputs, return_attention_scores=True)
attn_output = self.dropout1(attn_output, training=training)
attn_output += tf.random.normal(tf.shape(attn_output), mean=0.0, stddev=0.01) # 加入噪声
out1 = self.layernorm1(inputs + attn_output)
ffn_output = self.ffn(out1)
ffn_output = self.dropout2(ffn_output, training=training)
return self.layernorm2(out1 + ffn_output), attn_weights
def get_config(self):
config = super(TransformerEncoder, self).get_config()
config.update({
"num_heads": self.attention.num_heads,
"embed_dim": self.attention.key_dim,
"ff_dim": self.ffn.layers[0].units,
"rate": self.dropout1.rate
})
return config
@classmethod
def from_config(cls, config):
return cls(**config)
def build_model_1118(word2vec_embedding_dim, pos_tag_dim, entity_dim, time_series_input_shape):
import tensorflow as tf
from tensorflow.keras.layers import ( # type: ignore
Input, Dense, GRU, LSTM, Bidirectional, MultiHeadAttention, BatchNormalization,
Dropout, Concatenate, TimeDistributed, RepeatVector, Add, Lambda, LayerNormalization, GaussianNoise, Reshape
)
from tensorflow.keras.models import Model # type: ignore
from tensorflow.keras.regularizers import l2 # type: ignore
# 1. 文本特征处理
text_input = Input(shape=(word2vec_embedding_dim,), name='text_input')
text_dense = Dense(256, activation='relu', kernel_regularizer=l2(0.01), name='text_dense')(text_input)
text_batch_norm = BatchNormalization(name='text_batch_norm')(text_dense)
text_output = Dropout(0.3, name='text_dropout')(text_batch_norm)
# 2. POS 特征处理
pos_input = Input(shape=(pos_tag_dim,), name='pos_input')
pos_dense = Dense(64, activation='relu', kernel_regularizer=l2(0.01), name='pos_dense')(pos_input)
pos_batch_norm = BatchNormalization(name='pos_batch_norm')(pos_dense)
pos_output = Dropout(0.3, name='pos_dropout')(pos_batch_norm)
# 3. 命名实体识别特征处理
entity_input = Input(shape=(entity_dim,), name='entity_input')
entity_dense = Dense(64, activation='relu', kernel_regularizer=l2(0.01), name='entity_dense')(entity_input)
entity_batch_norm = BatchNormalization(name='entity_batch_norm')(entity_dense)
entity_output = Dropout(0.3, name='entity_dropout')(entity_batch_norm)
# 4. 情感分析特征处理
sentiment_input = Input(shape=(1,), name='sentiment_input')
sentiment_dense = Dense(256, activation='relu', kernel_regularizer=l2(0.01), name='sentiment_dense')(sentiment_input)
sentiment_batch_norm = BatchNormalization(name='sentiment_batch_norm')(sentiment_dense)
sentiment_output = Dropout(0.3, name='sentiment_dropout')(sentiment_batch_norm)
# 5. 时间序列特征处理(大盘数据)
def process_index(index_input, index_name, training):
# 第一个双向 LSTM 层,用于初步提取时间序列特征
x = Bidirectional(LSTM(256, return_sequences=True), name=f'{index_name}_bidirectional_lstm_1')(index_input)
# 第二个双向 LSTM 层,进一步挖掘时间序列的深层特征
x = Bidirectional(LSTM(128, return_sequences=True), name=f'{index_name}_bidirectional_lstm_2')(x)
# Transformer Encoder,用于捕捉全局的时间步间关系
x, attn_weights = TransformerEncoder(num_heads=4, embed_dim=256, ff_dim=512)(x, training=training)
# 投影到一个固定维度
x = Dense(128, activation='relu', name=f'{index_name}_project')(x) # 调整为 128 维
# 批量归一化,防止梯度消失或爆炸
x = BatchNormalization(name=f'{index_name}_batch_norm')(x)
# Dropout,防止过拟合
x = Dropout(0.3, name=f'{index_name}_dropout')(x)
return x, attn_weights
index_inx_input = Input(shape=(30, time_series_input_shape[1]), name='index_us_stock_index_INX')
index_dj_input = Input(shape=(30, time_series_input_shape[1]), name='index_us_stock_index_DJ')
index_ixic_input = Input(shape=(30, time_series_input_shape[1]), name='index_us_stock_index_IXIC')
index_ndx_input = Input(shape=(30, time_series_input_shape[1]), name='index_us_stock_index_NDX')
index_inx_processed, _ = process_index(index_inx_input, 'index_inx', training=True)
index_dj_processed, _ = process_index(index_dj_input, 'index_dj', training=True)
index_ixic_processed, _ = process_index(index_ixic_input, 'index_ixic', training=True)
index_ndx_processed, _ = process_index(index_ndx_input, 'index_ndx', training=True)
# 6. 时间序列特征处理(个股数据)
stock_input = Input(shape=(30, time_series_input_shape[1]), name='stock_input')
stock_gru = Bidirectional(GRU(256, return_sequences=True), name='stock_bidirectional_gru')(stock_input)
stock_attention = MultiHeadAttention(num_heads=4, key_dim=64, name='stock_attention')(stock_gru, stock_gru)
stock_dense = Dense(128, activation='relu', name='stock_dense')(stock_attention)
stock_batch_norm = BatchNormalization(name='stock_batch_norm')(stock_dense)
stock_dropout = Dropout(0.3, name='stock_dropout')(stock_batch_norm)
stock_processed = stock_dropout
# 7. 静态特征融合
static_features = Concatenate(name='static_features_concatenate')([
text_output * 2,
pos_output,
entity_output,
sentiment_output * 2
])
# 8. 合并所有特征
combined_features = Concatenate(name='combined_features')([
index_inx_processed,
index_dj_processed,
index_ixic_processed,
index_ndx_processed,
stock_processed
])
# 9. 静态特征扩展与时间序列结合
static_features_expanded = RepeatVector(30, name='static_features_expanded')(static_features)
combined_with_static = Concatenate(name='combined_with_static')([
combined_features,
static_features_expanded
])
# 10. 解码器
combined_dense = TimeDistributed(Dense(256, activation='relu', kernel_regularizer=l2(0.01)), name='combined_dense')(combined_with_static)
combined_dropout = Dropout(0.3, name='combined_dropout')(combined_dense)
decoder_gru = GRU(128, return_sequences=False, name='decoder_gru')(combined_dropout)
decoder_gru = Dropout(0.2)(decoder_gru) # Dropout
decoder_gru = GaussianNoise(0.02)(decoder_gru) # GaussianNois
# 独立预测未来 3 个时间步
future_day_1 = Dense(128, activation='relu', name='future_day_1')(decoder_gru)
future_day_2 = Dense(128, activation='relu', name='future_day_2')(decoder_gru)
future_day_3 = Dense(128, activation='relu', name='future_day_3')(decoder_gru)
future_day_1_expanded = ExpandDimension(name='future_day_1_expanded')(future_day_1)
future_day_2_expanded = ExpandDimension(name='future_day_2_expanded')(future_day_2)
future_day_3_expanded = ExpandDimension(name='future_day_3_expanded')(future_day_3)
future_reshaped = ConcatenateTimesteps(name='future_reshaped')(
[future_day_1_expanded, future_day_2_expanded, future_day_3_expanded]
)
# **为每个指数设计独立的输出层**
def create_output_layer(input_tensor, name):
x = TimeDistributed(Dense(64, activation='relu'), name=f'{name}_dense1')(input_tensor)
x = TimeDistributed(Dense(32, activation='relu'), name=f'{name}_dense2')(x)
x = Dense(6, activation='linear', name=f'{name}_final_output')(x)
return x
index_inx_output_final = create_output_layer(future_reshaped, 'index_inx')
index_dj_output_final = create_output_layer(future_reshaped, 'index_dj')
index_ixic_output_final = create_output_layer(future_reshaped, 'index_ixic')
index_ndx_output_final = create_output_layer(future_reshaped, 'index_ndx')
stock_output_final = create_output_layer(future_reshaped, 'stock')
news_sentiment_loss = Dense(1, activation='linear', name='news_sentiment_output')(text_output)
# 构建模型
model = Model(
inputs=[
text_input, pos_input, entity_input, sentiment_input,
index_inx_input, index_dj_input, index_ixic_input, index_ndx_input,
stock_input
],
outputs=[
index_inx_output_final, index_dj_output_final, index_ixic_output_final,
index_ndx_output_final, stock_output_final
]
)
# 优化器与学习率调度
lr_schedule = tf.keras.optimizers.schedules.CosineDecay(
initial_learning_rate=0.0005, # 初始学习率降低
decay_steps=10000,
alpha=0.1
)
optimizer = tf.keras.optimizers.AdamW(learning_rate=lr_schedule, weight_decay=0.01)
model.compile(optimizer=optimizer, loss=tf.keras.losses.Huber(), metrics=[['mae', 'mse']] * 5)
return model |