Spaces:
Running
Running
File size: 5,205 Bytes
24f73db fd36f13 24f73db 2442d6c 24f73db fd36f13 24f73db fd36f13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
---
title: MT564AITraining
emoji: π
colorFrom: blue
colorTo: gray
sdk: docker
pinned: false
license: apache-2.0
short_description: MT564Model training
---
# SWIFT-MT564-Assistant
Added MT564 TinyLlama training interface
β Created comprehensive training UI with file upload
β Integrated horoscope harvesting with MT564 training
β Both systems running in unified application
β Navigation links connect both functionalities
The application now provides both data harvesting for horoscopes AND MT564 TinyLlama training with a complete UI. You can access the MT564 training interface through the navigation menu.
## Project Overview
This project creates an AI-powered documentation assistant for financial messaging standards, specifically focused on the SWIFT MT564 message type. It combines web scraping, data processing, TinyLlama fine-tuning, and a user-friendly interface to provide an intelligent assistant for financial messaging professionals.
## Key Components
### 1. Data Collection & Processing
- **Web Scraper**: Extracts structured data from [ISO20022 SWIFT MT564 documentation](https://www.iso20022.org/15022/uhb/finmt564.htm)
- **PDF Parser**: Extracts text and structural information from uploaded SWIFT documentation PDFs
- **Data Formatter**: Converts scraped and parsed data into training examples for the model
### 2. Model Training Pipeline
- **TinyLlama Integration**: Implementation of TinyLlama, a smaller and more efficient LLM
- **Fine-tuning Scripts**: Specialized scripts for training on SWIFT message documentation
- **Evaluation Tools**: Methods to test the model's understanding of SWIFT message formats
### 3. User Interface
- **Web Application**: Flask-based interface for interacting with the model
- **PDF Upload**: Functionality to upload and process SWIFT documentation PDFs
- **Question-Answering System**: Interactive chat interface for asking questions about MT564 and related formats
## Technical Architecture
```
SWIFT-MT564-Assistant/
βββ scrapers/ # Web scraping components
β βββ iso20022_scraper.py # Scraper for ISO20022 website
β βββ pdf_parser.py # PDF extraction utilities
β βββ data_processor.py # Converts raw data to training format
β
βββ model/ # ML model components
β βββ tinyllama_trainer.py # Fine-tuning implementation
β βββ data_formatter.py # Prepares data for training
β βββ evaluator.py # Tests model performance
β
βββ webapp/ # Web application
β βββ app.py # Flask application
β βββ templates/ # HTML templates
β β βββ index.html # Main page
β β βββ result.html # Results display
β βββ static/ # CSS, JS, and other static files
β
βββ data/ # Data storage
β βββ raw/ # Raw scraped data
β βββ processed/ # Processed training data
β βββ uploaded/ # User-uploaded PDFs
β
βββ train_mt564_model.py # Script to train the model
βββ requirements.txt # Project dependencies
βββ README.md # Project documentation
```
## How It Works
1. **Data Collection Phase**:
- The ISO20022 scraper extracts structured data from the SWIFT MT564 documentation
- The data is processed and converted into a training dataset of instruction-response pairs
2. **Model Training Phase**:
- TinyLlama is fine-tuned on the specialized SWIFT message format data
- The model learns the structure, fields, and usage of MT564 messages
3. **User Interaction Phase**:
- Users upload SWIFT documentation PDFs through the web interface
- The system extracts and processes the PDF content
- Users ask questions about SWIFT messages and receive accurate, contextual responses
## Installation & Setup
### Prerequisites
- Python 3.8+
- PyTorch
- Transformers library
- Flask
- PDF processing libraries
### Installation Steps
```bash
# Clone the repository
git clone <repository-url>
cd SWIFT-MT564-Assistant
# Create a virtual environment
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# Install dependencies
pip install -r requirements.txt
# Download and prepare the model
python prepare_mt564_data.py
# Run the web application
python main.py
```
## Usage
### Training the Model
```bash
# Run the scraper to collect data
python scrapers/iso20022_scraper.py
# Process the data
python scrapers/data_processor.py
# Train the model
python train_mt564_model.py
```
### Using the Web Interface
1. Start the Flask application: `python main.py`
2. Open a browser and navigate to: `http://localhost:5000`
3. Upload a SWIFT MT564 documentation PDF
4. Ask questions about the SWIFT message format
## Future Enhancements
- Expand coverage to additional SWIFT message types (MT565, MT566, etc.)
- Implement multi-document reasoning across different SWIFT standards
- Add support for ISO20022 MX message formats
- Develop specialized modules for message validation and conversion |