Spaces:
Sleeping
Sleeping
File size: 4,453 Bytes
6ef000b 4274425 6ef000b 325521f 6ef000b 325521f 6ef000b 445dac6 6ef000b 445dac6 6ef000b 445dac6 6ef000b 325521f 6ef000b 325521f 6ef000b 4558128 deff711 6ef000b 4274425 325521f 6f2f0ca 445dac6 6f2f0ca 6ef000b 325521f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
import streamlit as st
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import TextLoader
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.chains import RetrievalQA
from langchain_google_genai import GoogleGenerativeAI
from langchain.prompts import PromptTemplate
#from langchain.chains import load_qa_chain, RetrievalQA
import requests
from bs4 import BeautifulSoup
from urllib.parse import urljoin
import re
from collections import deque
import time
import numpy as np
# Crawling function
def crawl(start_url: str, max_depth: int = 1, delay: float = 0.1) :
visited = set()
results = []
queue = deque([(start_url, 0)])
crawled_urls = []
while queue:
url, depth = queue.popleft()
if depth > max_depth or url in visited:
continue
visited.add(url)
crawled_urls.append(url)
try:
time.sleep(delay)
response = requests.get(url)
soup = BeautifulSoup(response.text, 'html.parser')
text = soup.get_text()
text = re.sub(r'\s+', ' ', text).strip()
results.append((url, text))
if depth < max_depth:
for link in soup.find_all('a', href=True):
next_url = urljoin(url, link['href'])
if next_url.startswith('https://docs.nvidia.com/cuda/') and next_url not in visited:
queue.append((next_url, depth + 1))
if len(queue) > 10:
break
except Exception as e:
print(f"Error crawling {url}: {e}")
return results, crawled_urls
# Text chunking function
def chunk_text(text: str, max_chunk_size: int = 1000) :
chunks = []
current_chunk = ""
for sentence in re.split(r'(?<=[.!?])\s+', text):
if len(current_chunk) + len(sentence) <= max_chunk_size:
current_chunk += sentence + " "
else:
chunks.append(current_chunk.strip())
current_chunk = sentence + " "
if current_chunk:
chunks.append(current_chunk.strip())
return chunks
# Streamlit UI
st.title("CUDA Documentation QA System")
# Initialize global variables
if 'vector_store' not in st.session_state:
st.session_state.vector_store = None
if 'documents_loaded' not in st.session_state:
st.session_state.documents_loaded = False
# Crawling and processing the data
if st.button('Crawl CUDA Documentation'):
with st.spinner('Crawling CUDA documentation...'):
crawled_data, crawled_urls = crawl("https://docs.nvidia.com/cuda/", max_depth=1, delay=0.1)
st.write(f"Processed {len(crawled_data)} pages.")
texts = []
for url, text in crawled_data:
chunks = chunk_text(text, max_chunk_size=1024)
texts.extend(chunks)
st.success("Crawling and processing completed.")
# Create embeddings
embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2', model_kwargs={'device': 'cpu'})
# Store embeddings in FAISS
st.session_state.vector_store = FAISS.from_texts(texts, embeddings)
st.session_state.documents_loaded = True
st.write("Embeddings stored in FAISS.")
# Asking questions
query = st.text_input("Enter your question about CUDA:")
if query and st.session_state.documents_loaded:
with st.spinner('Searching for an answer...'):
# Initialize Google Generative AI
llm = GoogleGenerativeAI(model='gemini-1.0-pro', google_api_key="AIzaSyC1AvHnvobbycU8XSCXh-gRq3DUfG0EP98")
#Create a PromptTemplate for the QA chain
qa_prompt = PromptTemplate(template="Answer the following question based on the context provided:\n\nContext: {context}\n\nQuestion: {question}\n\nAnswer:", input_variables=["context", "question"])
# Create the retrieval QA chain
qa_chain = RetrievalQA.from_chain_type(
retriever=st.session_state.vector_store.as_retriever(),
#chain_type="stuff",
llm=llm,
#chain_type_kwargs={"prompt": qa_prompt}
)
response = qa_chain({"question": query})
st.write("**Answer:**")
st.write(response['answer'])
st.write("**Source:**")
st.write(response['source'])
elif query:
st.warning("Please crawl the CUDA documentation first.")
|