import gradio as gr import tempfile import json from inference_bokehK import load_models, run_inference, OmegaConf import torch # Initialize models once at startup cfg = OmegaConf.load("configs/inference_genphoto/adv3_256_384_genphoto_relora_bokehK.yaml") pipeline, device = load_models(cfg) def generate_video(base_scene, bokehK_list): try: # Validate input if len(json.loads(bokehK_list)) != 5: raise ValueError("Exactly 5 Bokeh K values required") # Run inference video_path = run_inference( pipeline=pipeline, tokenizer=pipeline.tokenizer, text_encoder=pipeline.text_encoder, base_scene=base_scene, bokehK_list=bokehK_list, device=device ) return video_path except Exception as e: raise gr.Error(f"Generation failed: {str(e)}") # Example inputs examples = [ [ "A young boy wearing an orange jacket is standing on a crosswalk, waiting to cross the street.", "[2.5, 6.3, 10.1, 17.2, 24.0]" ], [ "A display of frozen desserts, including cupcakes and donuts, is arranged in a row on a counter.", "[20.0, 18.5, 15.0, 10.5, 5.0]" ] ] with gr.Blocks(title="Bokeh Effect Generator") as demo: gr.Markdown("#Dynamic Bokeh Effect Generation") with gr.Row(): with gr.Column(): scene_input = gr.Textbox( label="Scene Description", placeholder="Describe the scene you want to generate..." ) bokeh_input = gr.Textbox( label="Bokeh Blur Values", placeholder="Enter 5 comma-separated values from 1-30 (e.g., [2.44, 8.3, 10.1, 17.2, 24.0])" ) submit_btn = gr.Button("Generate Video", variant="primary") with gr.Column(): video_output = gr.Video(label="Generated Video") error_output = gr.Textbox(label="Error Messages", visible=False) gr.Examples( examples=examples, inputs=[scene_input, bokeh_input], outputs=[video_output], fn=generate_video, cache_examples=True ) submit_btn.click( fn=generate_video, inputs=[scene_input, bokeh_input], outputs=[video_output], ) if __name__ == "__main__": demo.launch(share=True)