Spaces:
Runtime error
Runtime error
fix diffusers
Browse files- genphoto/data/dataset.py +0 -950
- genphoto/models/unet.py +8 -8
- genphoto/pipelines/pipeline_animation.py +7 -7
- inference_bokehK.py +1 -1
- inference_color_temperature.py +1 -1
- inference_focal_length.py +1 -1
- inference_shutter_speed.py +1 -1
genphoto/data/dataset.py
DELETED
|
@@ -1,950 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import random
|
| 3 |
-
import json
|
| 4 |
-
import torch
|
| 5 |
-
import math
|
| 6 |
-
import torch.nn as nn
|
| 7 |
-
import torchvision.transforms as transforms
|
| 8 |
-
import torch.nn.functional as F
|
| 9 |
-
import numpy as np
|
| 10 |
-
from torch.utils.data.dataset import Dataset
|
| 11 |
-
from packaging import version as pver
|
| 12 |
-
import cv2
|
| 13 |
-
from PIL import Image
|
| 14 |
-
from einops import rearrange
|
| 15 |
-
from transformers import pipeline, CLIPTextModel, CLIPTokenizer
|
| 16 |
-
|
| 17 |
-
import sys
|
| 18 |
-
sys.path.append('/home/yuan418/data/project/Generative_Photography/genphoto/data/BokehMe/')
|
| 19 |
-
from classical_renderer.scatter import ModuleRenderScatter
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
#### for shutter speed ####
|
| 24 |
-
def create_shutter_speed_embedding(shutter_speed_values, target_height, target_width, base_exposure=0.5):
|
| 25 |
-
"""
|
| 26 |
-
Create an shutter_speed embedding tensor using a constant fwc value.
|
| 27 |
-
Args:
|
| 28 |
-
- shutter_speed_values: Tensor of shape [f, 1] containing shutter_speed values for each frame.
|
| 29 |
-
- H: Height of the image.
|
| 30 |
-
- W: Width of the image.
|
| 31 |
-
- base_exposure: A base exposure value to normalize brightness (defaults to 0.18 as a common base exposure level).
|
| 32 |
-
|
| 33 |
-
Returns:
|
| 34 |
-
- shutter_speed_embedding: Tensor of shape [f, 1, H, W] where each pixel is scaled based on the shutter_speed values.
|
| 35 |
-
"""
|
| 36 |
-
f = shutter_speed_values.shape[0]
|
| 37 |
-
|
| 38 |
-
# Set a constant full well capacity (fwc)
|
| 39 |
-
fwc = 32000 # Constant value for full well capacity
|
| 40 |
-
|
| 41 |
-
# Calculate scale based on EV and sensor full well capacity (fwc)
|
| 42 |
-
scales = (shutter_speed_values / base_exposure) * (fwc / (fwc + 0.0001))
|
| 43 |
-
|
| 44 |
-
# Reshape and expand to match image dimensions
|
| 45 |
-
scales = scales.unsqueeze(2).unsqueeze(3).expand(f, 3, target_height, target_width)
|
| 46 |
-
|
| 47 |
-
# Use scales to create the final shutter_speed embedding
|
| 48 |
-
shutter_speed_embedding = scales # Shape [f, 3, H, W]
|
| 49 |
-
return shutter_speed_embedding
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
def sensor_image_simulation_numpy(avg_PPP, photon_flux, fwc, Nbits, gain=1):
|
| 53 |
-
min_val = 0
|
| 54 |
-
max_val = 2 ** Nbits - 1
|
| 55 |
-
theta = photon_flux * (avg_PPP / (np.mean(photon_flux) + 0.0001))
|
| 56 |
-
theta = np.clip(theta, 0, fwc)
|
| 57 |
-
theta = np.round(theta * gain * max_val / fwc)
|
| 58 |
-
theta = np.clip(theta, min_val, max_val)
|
| 59 |
-
theta = theta.astype(np.float32)
|
| 60 |
-
return theta
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
class CameraShutterSpeed(Dataset):
|
| 64 |
-
def __init__(
|
| 65 |
-
self,
|
| 66 |
-
root_path,
|
| 67 |
-
annotation_json,
|
| 68 |
-
sample_n_frames=5,
|
| 69 |
-
sample_size=[256, 384],
|
| 70 |
-
is_Train=True,
|
| 71 |
-
):
|
| 72 |
-
self.root_path = root_path
|
| 73 |
-
self.sample_n_frames = sample_n_frames
|
| 74 |
-
self.dataset = json.load(open(os.path.join(root_path, annotation_json), 'r'))
|
| 75 |
-
self.length = len(self.dataset)
|
| 76 |
-
self.is_Train = is_Train
|
| 77 |
-
sample_size = tuple(sample_size) if not isinstance(sample_size, int) else (sample_size, sample_size)
|
| 78 |
-
self.sample_size = sample_size
|
| 79 |
-
|
| 80 |
-
pixel_transforms = [transforms.Resize(sample_size),
|
| 81 |
-
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)]
|
| 82 |
-
|
| 83 |
-
self.pixel_transforms = pixel_transforms
|
| 84 |
-
self.tokenizer = CLIPTokenizer.from_pretrained("/home/yuan418/data/project/stable-diffusion-v1-5/", subfolder="tokenizer")
|
| 85 |
-
self.text_encoder = CLIPTextModel.from_pretrained("/home/yuan418/data/project/stable-diffusion-v1-5/", subfolder="text_encoder")
|
| 86 |
-
|
| 87 |
-
def load_image_reader(self, idx):
|
| 88 |
-
image_dict = self.dataset[idx]
|
| 89 |
-
image_path = os.path.join(self.root_path, image_dict['base_image_path'])
|
| 90 |
-
image_reader = cv2.imread(image_path)
|
| 91 |
-
image_reader = cv2.cvtColor(image_reader, cv2.COLOR_BGR2RGB)
|
| 92 |
-
image_caption = image_dict['caption']
|
| 93 |
-
|
| 94 |
-
if self.is_Train:
|
| 95 |
-
mean = 0.48
|
| 96 |
-
std_dev = 0.25
|
| 97 |
-
shutter_speed_values = [random.gauss(mean, std_dev) for _ in range(self.sample_n_frames)]
|
| 98 |
-
shutter_speed_values = [max(0.1, min(1.0, ev)) for ev in shutter_speed_values]
|
| 99 |
-
print('train shutter_speed values', shutter_speed_values)
|
| 100 |
-
|
| 101 |
-
else:
|
| 102 |
-
shutter_speed_list_str = image_dict['shutter_speed_list']
|
| 103 |
-
shutter_speed_values = json.loads(shutter_speed_list_str)
|
| 104 |
-
print('validation shutter_speed_values', shutter_speed_values)
|
| 105 |
-
|
| 106 |
-
shutter_speed_values = torch.tensor(shutter_speed_values).unsqueeze(1)
|
| 107 |
-
return image_path, image_reader, image_caption, shutter_speed_values
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
def get_batch(self, idx):
|
| 111 |
-
image_path, image_reader, image_caption, shutter_speed_values = self.load_image_reader(idx)
|
| 112 |
-
|
| 113 |
-
total_frames = len(shutter_speed_values)
|
| 114 |
-
if total_frames < 3:
|
| 115 |
-
raise ValueError("less than 3 frames")
|
| 116 |
-
|
| 117 |
-
# Generate prompts for each shutter speed value and append shutter speed information to caption
|
| 118 |
-
prompts = []
|
| 119 |
-
for ss in shutter_speed_values:
|
| 120 |
-
prompt = f"<exposure: {ss.item()}>"
|
| 121 |
-
prompts.append(prompt)
|
| 122 |
-
|
| 123 |
-
# Tokenize prompts and encode to get embeddings
|
| 124 |
-
with torch.no_grad():
|
| 125 |
-
prompt_ids = self.tokenizer(
|
| 126 |
-
prompts, max_length=self.tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
|
| 127 |
-
).input_ids
|
| 128 |
-
# print('tokenizer model_max_length', self.tokenizer.model_max_length)
|
| 129 |
-
|
| 130 |
-
encoder_hidden_states = self.text_encoder(input_ids=prompt_ids).last_hidden_state # Shape: (f, sequence_length, hidden_size)
|
| 131 |
-
|
| 132 |
-
# print('encoder_hidden_states shape', encoder_hidden_states.shape)
|
| 133 |
-
|
| 134 |
-
# Calculate differences between consecutive embeddings (ignoring sequence_length)
|
| 135 |
-
differences = []
|
| 136 |
-
for i in range(1, encoder_hidden_states.size(0)):
|
| 137 |
-
diff = encoder_hidden_states[i] - encoder_hidden_states[i - 1]
|
| 138 |
-
diff = diff.unsqueeze(0)
|
| 139 |
-
differences.append(diff)
|
| 140 |
-
|
| 141 |
-
# Add the difference between the last and the first embedding
|
| 142 |
-
final_diff = encoder_hidden_states[-1] - encoder_hidden_states[0]
|
| 143 |
-
final_diff = final_diff.unsqueeze(0)
|
| 144 |
-
differences.append(final_diff)
|
| 145 |
-
|
| 146 |
-
# Concatenate differences along the batch dimension (f-1)
|
| 147 |
-
concatenated_differences = torch.cat(differences, dim=0)
|
| 148 |
-
# print('concatenated_differences shape', concatenated_differences.shape) # f 77 768
|
| 149 |
-
|
| 150 |
-
frame = concatenated_differences.size(0)
|
| 151 |
-
|
| 152 |
-
concatenated_differences = torch.cat(differences, dim=0)
|
| 153 |
-
|
| 154 |
-
# Current shape: (f, 77, 768) Pad the second dimension (77) to 128
|
| 155 |
-
pad_length = 128 - concatenated_differences.size(1)
|
| 156 |
-
if pad_length > 0:
|
| 157 |
-
# Pad along the second dimension (77 -> 128), pad only on the right side
|
| 158 |
-
concatenated_differences_padded = F.pad(concatenated_differences, (0, 0, 0, pad_length))
|
| 159 |
-
|
| 160 |
-
## ccl = constrative camera learning
|
| 161 |
-
ccl_embedding = concatenated_differences_padded.reshape(frame, self.sample_size[0], self.sample_size[1])
|
| 162 |
-
ccl_embedding = ccl_embedding.unsqueeze(1)
|
| 163 |
-
ccl_embedding = ccl_embedding.expand(-1, 3, -1, -1)
|
| 164 |
-
|
| 165 |
-
# Now handle the sensor image simulation
|
| 166 |
-
fwc = random.uniform(19000, 64000)
|
| 167 |
-
pixel_values = []
|
| 168 |
-
for ee in shutter_speed_values:
|
| 169 |
-
avg_PPP = (0.6 * ee.item() + 0.1) * fwc
|
| 170 |
-
img_sim = sensor_image_simulation_numpy(avg_PPP, image_reader, fwc, Nbits=8, gain=1)
|
| 171 |
-
pixel_values.append(img_sim)
|
| 172 |
-
pixel_values = np.stack(pixel_values, axis=0)
|
| 173 |
-
pixel_values = torch.from_numpy(pixel_values).permute(0, 3, 1, 2).contiguous() / 255.
|
| 174 |
-
|
| 175 |
-
# Create shutter_speed embedding and concatenate it with CCL embedding
|
| 176 |
-
shutter_speed_embedding = create_shutter_speed_embedding(shutter_speed_values, self.sample_size[0], self.sample_size[1])
|
| 177 |
-
|
| 178 |
-
camera_embedding = torch.cat((shutter_speed_embedding, ccl_embedding), dim=1)
|
| 179 |
-
# print('camera_embedding shape', camera_embedding.shape)
|
| 180 |
-
|
| 181 |
-
return pixel_values, image_caption, camera_embedding, shutter_speed_values
|
| 182 |
-
|
| 183 |
-
def __len__(self):
|
| 184 |
-
return self.length
|
| 185 |
-
|
| 186 |
-
def __getitem__(self, idx):
|
| 187 |
-
while True:
|
| 188 |
-
try:
|
| 189 |
-
video, video_caption, camera_embedding, shutter_speed_values = self.get_batch(idx)
|
| 190 |
-
break
|
| 191 |
-
except Exception as e:
|
| 192 |
-
idx = random.randint(0, self.length - 1)
|
| 193 |
-
|
| 194 |
-
for transform in self.pixel_transforms:
|
| 195 |
-
video = transform(video)
|
| 196 |
-
|
| 197 |
-
sample = dict(pixel_values=video, text=video_caption, camera_embedding=camera_embedding, shutter_speed_values=shutter_speed_values)
|
| 198 |
-
|
| 199 |
-
return sample
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
#### for focal length ####
|
| 209 |
-
def crop_focal_length(image_path, base_focal_length, target_focal_length, target_height, target_width, sensor_height=24.0, sensor_width=36.0):
|
| 210 |
-
img = Image.open(image_path)
|
| 211 |
-
width, height = img.size
|
| 212 |
-
|
| 213 |
-
# Calculate base and target FOV
|
| 214 |
-
base_x_fov = 2.0 * math.atan(sensor_width * 0.5 / base_focal_length)
|
| 215 |
-
base_y_fov = 2.0 * math.atan(sensor_height * 0.5 / base_focal_length)
|
| 216 |
-
|
| 217 |
-
target_x_fov = 2.0 * math.atan(sensor_width * 0.5 / target_focal_length)
|
| 218 |
-
target_y_fov = 2.0 * math.atan(sensor_height * 0.5 / target_focal_length)
|
| 219 |
-
|
| 220 |
-
# Calculate crop ratio, use the smaller ratio to maintain aspect ratio
|
| 221 |
-
crop_ratio = min(target_x_fov / base_x_fov, target_y_fov / base_y_fov)
|
| 222 |
-
|
| 223 |
-
crop_width = int(round(crop_ratio * width))
|
| 224 |
-
crop_height = int(round(crop_ratio * height))
|
| 225 |
-
|
| 226 |
-
# Ensure crop dimensions are within valid bounds
|
| 227 |
-
crop_width = max(1, min(width, crop_width))
|
| 228 |
-
crop_height = max(1, min(height, crop_height))
|
| 229 |
-
|
| 230 |
-
# Crop coordinates
|
| 231 |
-
left = int((width - crop_width) / 2)
|
| 232 |
-
top = int((height - crop_height) / 2)
|
| 233 |
-
right = int((width + crop_width) / 2)
|
| 234 |
-
bottom = int((height + crop_height) / 2)
|
| 235 |
-
|
| 236 |
-
# Crop the image
|
| 237 |
-
zoomed_img = img.crop((left, top, right, bottom))
|
| 238 |
-
|
| 239 |
-
# Resize the cropped image to target resolution
|
| 240 |
-
resized_img = zoomed_img.resize((target_width, target_height), Image.Resampling.LANCZOS)
|
| 241 |
-
|
| 242 |
-
# Convert the PIL image to a numpy array
|
| 243 |
-
resized_img_np = np.array(resized_img).astype(np.float32)
|
| 244 |
-
|
| 245 |
-
return resized_img_np
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
def create_focal_length_embedding(focal_length_values, base_focal_length, target_height, target_width, sensor_height=24.0, sensor_width=36.0):
|
| 249 |
-
device = 'cpu'
|
| 250 |
-
focal_length_values = focal_length_values.to(device)
|
| 251 |
-
|
| 252 |
-
f = focal_length_values.shape[0] # Number of frames
|
| 253 |
-
|
| 254 |
-
# Convert constants to tensors to perform operations with focal_length_values
|
| 255 |
-
sensor_width = torch.tensor(sensor_width, device=device)
|
| 256 |
-
sensor_height = torch.tensor(sensor_height, device=device)
|
| 257 |
-
base_focal_length = torch.tensor(base_focal_length, device=device)
|
| 258 |
-
|
| 259 |
-
# Calculate the FOV for the base focal length (min_focal_length)
|
| 260 |
-
base_fov_x = 2.0 * torch.atan(sensor_width * 0.5 / base_focal_length)
|
| 261 |
-
base_fov_y = 2.0 * torch.atan(sensor_height * 0.5 / base_focal_length)
|
| 262 |
-
|
| 263 |
-
# Calculate the FOV for each focal length in focal_length_values
|
| 264 |
-
target_fov_x = 2.0 * torch.atan(sensor_width * 0.5 / focal_length_values)
|
| 265 |
-
target_fov_y = 2.0 * torch.atan(sensor_height * 0.5 / focal_length_values)
|
| 266 |
-
|
| 267 |
-
# Calculate crop ratio: how much of the image is cropped at the current focal length
|
| 268 |
-
crop_ratio_xs = target_fov_x / base_fov_x # Crop ratio for horizontal axis
|
| 269 |
-
crop_ratio_ys = target_fov_y / base_fov_y # Crop ratio for vertical axis
|
| 270 |
-
|
| 271 |
-
# Get the center of the image
|
| 272 |
-
center_h, center_w = target_height // 2, target_width // 2
|
| 273 |
-
|
| 274 |
-
# Initialize a mask tensor with zeros on CPU
|
| 275 |
-
focal_length_embedding = torch.zeros((f, 3, target_height, target_width), dtype=torch.float32) # Shape [f, 3, H, W]
|
| 276 |
-
|
| 277 |
-
# Fill the center region with 1 based on the calculated crop dimensions
|
| 278 |
-
for i in range(f):
|
| 279 |
-
# Crop dimensions calculated using rounded float values
|
| 280 |
-
crop_h = torch.round(crop_ratio_ys[i] * target_height).int().item() # Rounded cropped height for the current frame
|
| 281 |
-
crop_w = torch.round(crop_ratio_xs[i] * target_width).int().item() # Rounded cropped width for the current frame
|
| 282 |
-
|
| 283 |
-
# Ensure the cropped dimensions are within valid bounds
|
| 284 |
-
crop_h = max(1, min(target_height, crop_h))
|
| 285 |
-
crop_w = max(1, min(target_width, crop_w))
|
| 286 |
-
|
| 287 |
-
# Set the center region of the focal_length embedding to 1 for the current frame
|
| 288 |
-
focal_length_embedding[i, :,
|
| 289 |
-
center_h - crop_h // 2: center_h + crop_h // 2,
|
| 290 |
-
center_w - crop_w // 2: center_w + crop_w // 2] = 1.0
|
| 291 |
-
|
| 292 |
-
return focal_length_embedding
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
class CameraFocalLength(Dataset):
|
| 296 |
-
def __init__(
|
| 297 |
-
self,
|
| 298 |
-
root_path,
|
| 299 |
-
annotation_json,
|
| 300 |
-
sample_n_frames=5,
|
| 301 |
-
sample_size=[256, 384],
|
| 302 |
-
is_Train=True,
|
| 303 |
-
):
|
| 304 |
-
self.root_path = root_path
|
| 305 |
-
self.sample_n_frames = sample_n_frames
|
| 306 |
-
self.dataset = json.load(open(os.path.join(root_path, annotation_json), 'r'))
|
| 307 |
-
self.length = len(self.dataset)
|
| 308 |
-
sample_size = tuple(sample_size) if not isinstance(sample_size, int) else (sample_size, sample_size)
|
| 309 |
-
self.sample_size = sample_size
|
| 310 |
-
pixel_transforms = [transforms.Resize(sample_size),
|
| 311 |
-
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)]
|
| 312 |
-
|
| 313 |
-
self.pixel_transforms = pixel_transforms
|
| 314 |
-
self.is_Train = is_Train
|
| 315 |
-
self.tokenizer = CLIPTokenizer.from_pretrained("/home/yuan418/data/project/stable-diffusion-v1-5/", subfolder="tokenizer")
|
| 316 |
-
self.text_encoder = CLIPTextModel.from_pretrained("/home/yuan418/data/project/stable-diffusion-v1-5/", subfolder="text_encoder")
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
def load_image_reader(self, idx):
|
| 320 |
-
image_dict = self.dataset[idx]
|
| 321 |
-
|
| 322 |
-
image_path = os.path.join(self.root_path, image_dict['base_image_path'])
|
| 323 |
-
image_reader = cv2.imread(image_path)
|
| 324 |
-
|
| 325 |
-
image_caption = image_dict['caption']
|
| 326 |
-
|
| 327 |
-
if self.is_Train:
|
| 328 |
-
focal_length_values = [random.uniform(24.0, 70.0) for _ in range(self.sample_n_frames)]
|
| 329 |
-
print('train focal_length_values', focal_length_values)
|
| 330 |
-
else:
|
| 331 |
-
focal_length_list_str = image_dict['focal_length_list']
|
| 332 |
-
focal_length_values = json.loads(focal_length_list_str)
|
| 333 |
-
print('validation focal_length_values', focal_length_values)
|
| 334 |
-
|
| 335 |
-
focal_length_values = torch.tensor(focal_length_values).unsqueeze(1)
|
| 336 |
-
|
| 337 |
-
return image_path, image_reader, image_caption, focal_length_values
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
def get_batch(self, idx):
|
| 341 |
-
image_path, image_reader, image_caption, focal_length_values = self.load_image_reader(idx)
|
| 342 |
-
|
| 343 |
-
total_frames = len(focal_length_values)
|
| 344 |
-
if total_frames < 3:
|
| 345 |
-
raise ValueError("less than 3 frames")
|
| 346 |
-
|
| 347 |
-
# Generate prompts for each fl value and append fl information to caption
|
| 348 |
-
prompts = []
|
| 349 |
-
for fl in focal_length_values:
|
| 350 |
-
prompt = f"<focal length: {fl.item()}>"
|
| 351 |
-
prompts.append(prompt)
|
| 352 |
-
|
| 353 |
-
# Tokenize prompts and encode to get embeddings
|
| 354 |
-
with torch.no_grad():
|
| 355 |
-
prompt_ids = self.tokenizer(
|
| 356 |
-
prompts, max_length=self.tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
|
| 357 |
-
).input_ids
|
| 358 |
-
|
| 359 |
-
encoder_hidden_states = self.text_encoder(input_ids=prompt_ids).last_hidden_state # Shape: (f, sequence_length, hidden_size)
|
| 360 |
-
# print('encoder_hidden_states shape', encoder_hidden_states.shape)
|
| 361 |
-
|
| 362 |
-
# Calculate differences between consecutive embeddings (ignoring sequence_length)
|
| 363 |
-
differences = []
|
| 364 |
-
for i in range(1, encoder_hidden_states.size(0)):
|
| 365 |
-
diff = encoder_hidden_states[i] - encoder_hidden_states[i - 1]
|
| 366 |
-
diff = diff.unsqueeze(0)
|
| 367 |
-
differences.append(diff)
|
| 368 |
-
|
| 369 |
-
# Add the difference between the last and the first embedding
|
| 370 |
-
final_diff = encoder_hidden_states[-1] - encoder_hidden_states[0]
|
| 371 |
-
final_diff = final_diff.unsqueeze(0)
|
| 372 |
-
differences.append(final_diff)
|
| 373 |
-
|
| 374 |
-
# Concatenate differences along the batch dimension (f-1)
|
| 375 |
-
concatenated_differences = torch.cat(differences, dim=0)
|
| 376 |
-
# print('concatenated_differences shape', concatenated_differences.shape) # f 77 768
|
| 377 |
-
|
| 378 |
-
frame = concatenated_differences.size(0)
|
| 379 |
-
|
| 380 |
-
# Concatenate differences along the batch dimension (f)
|
| 381 |
-
concatenated_differences = torch.cat(differences, dim=0)
|
| 382 |
-
|
| 383 |
-
# Current shape: (f, 77, 768), Pad the second dimension (77) to 128
|
| 384 |
-
pad_length = 128 - concatenated_differences.size(1)
|
| 385 |
-
if pad_length > 0:
|
| 386 |
-
# Pad along the second dimension (77 -> 128), pad only on the right side
|
| 387 |
-
concatenated_differences_padded = F.pad(concatenated_differences, (0, 0, 0, pad_length))
|
| 388 |
-
|
| 389 |
-
## CCL = constrative camera learning
|
| 390 |
-
ccl_embedding = concatenated_differences_padded.reshape(frame, self.sample_size[0], self.sample_size[1])
|
| 391 |
-
|
| 392 |
-
ccl_embedding = ccl_embedding.unsqueeze(1)
|
| 393 |
-
ccl_embedding = ccl_embedding.expand(-1, 3, -1, -1)
|
| 394 |
-
# print('ccl_embedding shape', ccl_embedding.shape)
|
| 395 |
-
|
| 396 |
-
pixel_values = []
|
| 397 |
-
for ff in focal_length_values:
|
| 398 |
-
img_sim = crop_focal_length(image_path=image_path, base_focal_length=24.0, target_focal_length=ff, target_height=self.sample_size[0], target_width=self.sample_size[1], sensor_height=24.0, sensor_width=36.0)
|
| 399 |
-
|
| 400 |
-
pixel_values.append(img_sim)
|
| 401 |
-
# save_path = os.path.join(self.root_path, f"simulated_img_focal_length_{fl.item():.2f}.png")
|
| 402 |
-
# cv2.imwrite(save_path, img_sim)
|
| 403 |
-
# print(f"Saved image: {save_path}")
|
| 404 |
-
|
| 405 |
-
pixel_values = np.stack(pixel_values, axis=0)
|
| 406 |
-
pixel_values = torch.from_numpy(pixel_values).permute(0, 3, 1, 2).contiguous() / 255.
|
| 407 |
-
|
| 408 |
-
focal_length_embedding = create_focal_length_embedding(focal_length_values, base_focal_length=24.0, target_height=self.sample_size[0], target_width=self.sample_size[1])
|
| 409 |
-
# print('focal_length_embedding shape', focal_length_embedding.shape)
|
| 410 |
-
|
| 411 |
-
camera_embedding = torch.cat((focal_length_embedding, ccl_embedding), dim=1)
|
| 412 |
-
# print('camera_embedding shape', camera_embedding.shape)
|
| 413 |
-
|
| 414 |
-
return pixel_values, image_caption, camera_embedding, focal_length_values
|
| 415 |
-
|
| 416 |
-
def __len__(self):
|
| 417 |
-
return self.length
|
| 418 |
-
|
| 419 |
-
def __getitem__(self, idx):
|
| 420 |
-
while True:
|
| 421 |
-
try:
|
| 422 |
-
video, video_caption, camera_embedding, focal_length_values = self.get_batch(idx)
|
| 423 |
-
break
|
| 424 |
-
except Exception as e:
|
| 425 |
-
idx = random.randint(0, self.length - 1)
|
| 426 |
-
|
| 427 |
-
for transform in self.pixel_transforms:
|
| 428 |
-
video = transform(video)
|
| 429 |
-
|
| 430 |
-
sample = dict(pixel_values=video, text=video_caption, camera_embedding=camera_embedding, focal_length_values=focal_length_values)
|
| 431 |
-
|
| 432 |
-
return sample
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
#### for color temperature ####
|
| 441 |
-
def kelvin_to_rgb(kelvin):
|
| 442 |
-
temp = kelvin / 100.0
|
| 443 |
-
|
| 444 |
-
if temp <= 66:
|
| 445 |
-
red = 255
|
| 446 |
-
green = 99.4708025861 * np.log(temp) - 161.1195681661 if temp > 0 else 0
|
| 447 |
-
if temp <= 19:
|
| 448 |
-
blue = 0
|
| 449 |
-
else:
|
| 450 |
-
blue = 138.5177312231 * np.log(temp - 10) - 305.0447927307
|
| 451 |
-
|
| 452 |
-
elif 66<temp<=88:
|
| 453 |
-
red = 0.5 * (255 + 329.698727446 * ((temp - 60) ** -0.19332047592))
|
| 454 |
-
green = 0.5 * (288.1221695283 * ((temp - 60) ** -0.1155148492) + (99.4708025861 * np.log(temp) - 161.1195681661 if temp > 0 else 0))
|
| 455 |
-
blue = 0.5 * (138.5177312231 * np.log(temp - 10) - 305.0447927307 + 255)
|
| 456 |
-
|
| 457 |
-
else:
|
| 458 |
-
red = 329.698727446 * ((temp - 60) ** -0.19332047592)
|
| 459 |
-
green = 288.1221695283 * ((temp - 60) ** -0.1155148492)
|
| 460 |
-
blue = 255
|
| 461 |
-
|
| 462 |
-
return np.array([red, green, blue], dtype=np.float32) / 255.0
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
def create_color_temperature_embedding(color_temperature_values, target_height, target_width, min_color_temperature=2000, max_color_temperature=10000):
|
| 467 |
-
"""
|
| 468 |
-
Create an color_temperature embedding tensor based on color temperature.
|
| 469 |
-
Args:
|
| 470 |
-
- color_temperature_values: Tensor of shape [f, 1] containing color_temperature values for each frame.
|
| 471 |
-
- target_height: Height of the image.
|
| 472 |
-
- target_width: Width of the image.
|
| 473 |
-
- min_color_temperature: Minimum color_temperature value for normalization.
|
| 474 |
-
- max_color_temperature: Maximum color_temperature value for normalization.
|
| 475 |
-
Returns:
|
| 476 |
-
- color_temperature_embedding: Tensor of shape [f, 3, target_height, target_width] for RGB channel scaling.
|
| 477 |
-
"""
|
| 478 |
-
f = color_temperature_values.shape[0]
|
| 479 |
-
rgb_factors = []
|
| 480 |
-
|
| 481 |
-
# Compute RGB factors based on kelvin_to_rgb function
|
| 482 |
-
for ct in color_temperature_values.squeeze():
|
| 483 |
-
kelvin = min_color_temperature + (ct * (max_color_temperature - min_color_temperature)) # Map normalized color_temperature to actual Kelvin
|
| 484 |
-
rgb = kelvin_to_rgb(kelvin)
|
| 485 |
-
rgb_factors.append(rgb)
|
| 486 |
-
|
| 487 |
-
# Convert to tensor and expand to target dimensions
|
| 488 |
-
rgb_factors = torch.tensor(rgb_factors).float() # [f, 3]
|
| 489 |
-
rgb_factors = rgb_factors.unsqueeze(2).unsqueeze(3) # [f, 3, 1, 1]
|
| 490 |
-
color_temperature_embedding = rgb_factors.expand(f, 3, target_height, target_width) # [f, 3, target_height, target_width]
|
| 491 |
-
return color_temperature_embedding
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
def kelvin_to_rgb_smooth(kelvin):
|
| 496 |
-
temp = kelvin / 100.0
|
| 497 |
-
|
| 498 |
-
if temp <= 66:
|
| 499 |
-
red = 255
|
| 500 |
-
green = 99.4708025861 * np.log(temp) - 161.1195681661 if temp > 0 else 0
|
| 501 |
-
if temp <= 19:
|
| 502 |
-
blue = 0
|
| 503 |
-
else:
|
| 504 |
-
blue = 138.5177312231 * np.log(temp - 10) - 305.0447927307
|
| 505 |
-
|
| 506 |
-
elif 66<temp<=88:
|
| 507 |
-
red = 0.5 * (255 + 329.698727446 * ((temp - 60) ** -0.19332047592))
|
| 508 |
-
green = 0.5 * (288.1221695283 * ((temp - 60) ** -0.1155148492) + (99.4708025861 * np.log(temp) - 161.1195681661 if temp > 0 else 0))
|
| 509 |
-
blue = 0.5 * (138.5177312231 * np.log(temp - 10) - 305.0447927307 + 255)
|
| 510 |
-
|
| 511 |
-
else:
|
| 512 |
-
red = 329.698727446 * ((temp - 60) ** -0.19332047592)
|
| 513 |
-
green = 288.1221695283 * ((temp - 60) ** -0.1155148492)
|
| 514 |
-
blue = 255
|
| 515 |
-
|
| 516 |
-
red = np.clip(red, 0, 255)
|
| 517 |
-
green = np.clip(green, 0, 255)
|
| 518 |
-
blue = np.clip(blue, 0, 255)
|
| 519 |
-
balance_rgb = np.array([red, green, blue], dtype=np.float32)
|
| 520 |
-
|
| 521 |
-
return balance_rgb
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
def interpolate_white_balance(image, kelvin):
|
| 525 |
-
|
| 526 |
-
balance_rgb = kelvin_to_rgb_smooth(kelvin.item())
|
| 527 |
-
image = image.astype(np.float32)
|
| 528 |
-
|
| 529 |
-
r, g, b = cv2.split(image)
|
| 530 |
-
r = r * (balance_rgb[0] / 255.0)
|
| 531 |
-
g = g * (balance_rgb[1] / 255.0)
|
| 532 |
-
b = b * (balance_rgb[2] / 255.0)
|
| 533 |
-
|
| 534 |
-
balanced_image = cv2.merge([r,g,b])
|
| 535 |
-
balanced_image = np.clip(balanced_image, 0, 255).astype(np.uint8)
|
| 536 |
-
|
| 537 |
-
return balanced_image
|
| 538 |
-
|
| 539 |
-
|
| 540 |
-
class CameraColorTemperature(Dataset):
|
| 541 |
-
def __init__(
|
| 542 |
-
self,
|
| 543 |
-
root_path,
|
| 544 |
-
annotation_json,
|
| 545 |
-
sample_n_frames=5,
|
| 546 |
-
sample_size=[256, 384],
|
| 547 |
-
is_Train=True,
|
| 548 |
-
):
|
| 549 |
-
self.root_path = root_path
|
| 550 |
-
self.sample_n_frames = sample_n_frames
|
| 551 |
-
self.dataset = json.load(open(os.path.join(root_path, annotation_json), 'r'))
|
| 552 |
-
|
| 553 |
-
self.length = len(self.dataset)
|
| 554 |
-
self.is_Train = is_Train
|
| 555 |
-
|
| 556 |
-
sample_size = tuple(sample_size) if not isinstance(sample_size, int) else (sample_size, sample_size)
|
| 557 |
-
self.sample_size = sample_size
|
| 558 |
-
|
| 559 |
-
pixel_transforms = [transforms.Resize(sample_size),
|
| 560 |
-
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)]
|
| 561 |
-
|
| 562 |
-
self.pixel_transforms = pixel_transforms
|
| 563 |
-
self.tokenizer = CLIPTokenizer.from_pretrained("/home/yuan418/data/project/stable-diffusion-v1-5/", subfolder="tokenizer")
|
| 564 |
-
self.text_encoder = CLIPTextModel.from_pretrained("/home/yuan418/data/project/stable-diffusion-v1-5/", subfolder="text_encoder")
|
| 565 |
-
|
| 566 |
-
def load_image_reader(self, idx):
|
| 567 |
-
image_dict = self.dataset[idx]
|
| 568 |
-
|
| 569 |
-
image_path = os.path.join(self.root_path, image_dict['base_image_path'])
|
| 570 |
-
image_reader = cv2.imread(image_path)
|
| 571 |
-
image_reader = cv2.cvtColor(image_reader, cv2.COLOR_BGR2RGB)
|
| 572 |
-
|
| 573 |
-
image_caption = image_dict['caption']
|
| 574 |
-
|
| 575 |
-
if self.is_Train:
|
| 576 |
-
color_temperature_values = [random.uniform(2000.0, 10000.0) for _ in range(self.sample_n_frames)]
|
| 577 |
-
print('train color_temperature values', color_temperature_values)
|
| 578 |
-
|
| 579 |
-
else:
|
| 580 |
-
color_temperature_list_str = image_dict['color_temperature_list']
|
| 581 |
-
color_temperature_values = json.loads(color_temperature_list_str)
|
| 582 |
-
print('validation color_temperature_values', color_temperature_values)
|
| 583 |
-
|
| 584 |
-
color_temperature_values = torch.tensor(color_temperature_values).unsqueeze(1)
|
| 585 |
-
return image_path, image_reader, image_caption, color_temperature_values
|
| 586 |
-
|
| 587 |
-
|
| 588 |
-
def get_batch(self, idx):
|
| 589 |
-
image_path, image_reader, image_caption, color_temperature_values = self.load_image_reader(idx)
|
| 590 |
-
|
| 591 |
-
total_frames = len(color_temperature_values)
|
| 592 |
-
if total_frames < 3:
|
| 593 |
-
raise ValueError("less than 3 frames")
|
| 594 |
-
|
| 595 |
-
# Generate prompts for each color_temperature value and append color_temperature information to caption
|
| 596 |
-
prompts = []
|
| 597 |
-
for cc in color_temperature_values:
|
| 598 |
-
prompt = f"<color temperature: {cc.item()}>"
|
| 599 |
-
prompts.append(prompt)
|
| 600 |
-
|
| 601 |
-
# Tokenize prompts and encode to get embeddings
|
| 602 |
-
with torch.no_grad():
|
| 603 |
-
prompt_ids = self.tokenizer(
|
| 604 |
-
prompts, max_length=self.tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
|
| 605 |
-
).input_ids
|
| 606 |
-
# print('tokenizer model_max_length', self.tokenizer.model_max_length)
|
| 607 |
-
|
| 608 |
-
encoder_hidden_states = self.text_encoder(input_ids=prompt_ids).last_hidden_state # Shape: (f, sequence_length, hidden_size)
|
| 609 |
-
|
| 610 |
-
# print('encoder_hidden_states shape', encoder_hidden_states.shape)
|
| 611 |
-
|
| 612 |
-
# Calculate differences between consecutive embeddings (ignoring sequence_length)
|
| 613 |
-
differences = []
|
| 614 |
-
for i in range(1, encoder_hidden_states.size(0)):
|
| 615 |
-
diff = encoder_hidden_states[i] - encoder_hidden_states[i - 1]
|
| 616 |
-
diff = diff.unsqueeze(0)
|
| 617 |
-
differences.append(diff)
|
| 618 |
-
|
| 619 |
-
# Add the difference between the last and the first embedding
|
| 620 |
-
final_diff = encoder_hidden_states[-1] - encoder_hidden_states[0]
|
| 621 |
-
final_diff = final_diff.unsqueeze(0)
|
| 622 |
-
differences.append(final_diff)
|
| 623 |
-
|
| 624 |
-
# Concatenate differences along the batch dimension (f-1)
|
| 625 |
-
concatenated_differences = torch.cat(differences, dim=0)
|
| 626 |
-
# print('concatenated_differences shape', concatenated_differences.shape) # f 77 768
|
| 627 |
-
|
| 628 |
-
frame = concatenated_differences.size(0)
|
| 629 |
-
|
| 630 |
-
concatenated_differences = torch.cat(differences, dim=0)
|
| 631 |
-
|
| 632 |
-
# Current shape: (f, 77, 768), Pad the second dimension (77) to 128
|
| 633 |
-
pad_length = 128 - concatenated_differences.size(1)
|
| 634 |
-
if pad_length > 0:
|
| 635 |
-
# Pad along the second dimension (77 -> 128), pad only on the right side
|
| 636 |
-
concatenated_differences_padded = F.pad(concatenated_differences, (0, 0, 0, pad_length))
|
| 637 |
-
|
| 638 |
-
ccl_embedding = concatenated_differences_padded.reshape(frame, self.sample_size[0], self.sample_size[1])
|
| 639 |
-
ccl_embedding = ccl_embedding.unsqueeze(1)
|
| 640 |
-
ccl_embedding = ccl_embedding.expand(-1, 3, -1, -1)
|
| 641 |
-
# print('ccl_embedding shape', ccl_embedding.shape)
|
| 642 |
-
|
| 643 |
-
# Now handle the sensor image simulation
|
| 644 |
-
pixel_values = []
|
| 645 |
-
for aw in color_temperature_values:
|
| 646 |
-
img_sim = interpolate_white_balance(image_reader, aw)
|
| 647 |
-
pixel_values.append(img_sim)
|
| 648 |
-
pixel_values = np.stack(pixel_values, axis=0)
|
| 649 |
-
pixel_values = torch.from_numpy(pixel_values).permute(0, 3, 1, 2).contiguous() / 255.
|
| 650 |
-
|
| 651 |
-
# Create color_temperature embedding and concatenate it with CCL embedding
|
| 652 |
-
color_temperature_embedding = create_color_temperature_embedding(color_temperature_values, self.sample_size[0], self.sample_size[1])
|
| 653 |
-
# print('color_temperature_embedding shape', color_temperature_embedding.shape)
|
| 654 |
-
|
| 655 |
-
camera_embedding = torch.cat((color_temperature_embedding, ccl_embedding), dim=1)
|
| 656 |
-
# print('camera_embedding shape', camera_embedding.shape)
|
| 657 |
-
|
| 658 |
-
return pixel_values, image_caption, camera_embedding, color_temperature_values
|
| 659 |
-
|
| 660 |
-
def __len__(self):
|
| 661 |
-
return self.length
|
| 662 |
-
|
| 663 |
-
def __getitem__(self, idx):
|
| 664 |
-
while True:
|
| 665 |
-
try:
|
| 666 |
-
video, video_caption, camera_embedding, color_temperature_values = self.get_batch(idx)
|
| 667 |
-
break
|
| 668 |
-
except Exception as e:
|
| 669 |
-
idx = random.randint(0, self.length - 1)
|
| 670 |
-
|
| 671 |
-
for transform in self.pixel_transforms:
|
| 672 |
-
video = transform(video)
|
| 673 |
-
|
| 674 |
-
sample = dict(pixel_values=video, text=video_caption, camera_embedding=camera_embedding, color_temperature_values=color_temperature_values)
|
| 675 |
-
|
| 676 |
-
return sample
|
| 677 |
-
|
| 678 |
-
|
| 679 |
-
|
| 680 |
-
|
| 681 |
-
|
| 682 |
-
|
| 683 |
-
|
| 684 |
-
|
| 685 |
-
#### for bokeh (K is the blur parameter) ####
|
| 686 |
-
def create_bokehK_embedding(bokehK_values, target_height, target_width):
|
| 687 |
-
"""
|
| 688 |
-
Creates a Bokeh embedding based on the given K values. The larger the K value,
|
| 689 |
-
the more the image is blurred.
|
| 690 |
-
|
| 691 |
-
Args:
|
| 692 |
-
bokehK_values (torch.Tensor): Tensor of K values for bokeh effect.
|
| 693 |
-
target_height (int): Desired height of the output embedding.
|
| 694 |
-
target_width (int): Desired width of the output embedding.
|
| 695 |
-
base_K (float): Base K value to control the minimum blur level.
|
| 696 |
-
|
| 697 |
-
Returns:
|
| 698 |
-
torch.Tensor: Bokeh embedding tensor. [f 3 h w]
|
| 699 |
-
"""
|
| 700 |
-
f = bokehK_values.shape[0]
|
| 701 |
-
bokehK_embedding = torch.zeros((f, 3, target_height, target_width), dtype=bokehK_values.dtype)
|
| 702 |
-
|
| 703 |
-
for i in range(f):
|
| 704 |
-
K_value = bokehK_values[i].item()
|
| 705 |
-
|
| 706 |
-
kernel_size = max(K_value, 1)
|
| 707 |
-
sigma = K_value / 3.0
|
| 708 |
-
|
| 709 |
-
ax = np.linspace(-(kernel_size / 2), kernel_size / 2, int(np.ceil(kernel_size)))
|
| 710 |
-
xx, yy = np.meshgrid(ax, ax)
|
| 711 |
-
kernel = np.exp(-(xx ** 2 + yy ** 2) / (2 * sigma ** 2))
|
| 712 |
-
kernel /= np.sum(kernel)
|
| 713 |
-
|
| 714 |
-
scale = kernel[int(np.ceil(kernel_size) / 2), int(np.ceil(kernel_size) / 2)]
|
| 715 |
-
bokehK_embedding[i] = scale
|
| 716 |
-
|
| 717 |
-
return bokehK_embedding
|
| 718 |
-
|
| 719 |
-
|
| 720 |
-
def bokehK_simulation(image_path, depth_map_path, K, disp_focus, gamma=2.2):
|
| 721 |
-
## depth map image can be inferenced online using following code ##
|
| 722 |
-
# model_dir = "/home/modules/"
|
| 723 |
-
# pipe = pipeline(
|
| 724 |
-
# task="depth-estimation",
|
| 725 |
-
# model="depth-anything/Depth-Anything-V2-Small-hf",
|
| 726 |
-
# cache_dir=model_dir,
|
| 727 |
-
# device=0
|
| 728 |
-
# )
|
| 729 |
-
|
| 730 |
-
# image_raw = Image.open(image_path)
|
| 731 |
-
|
| 732 |
-
# disp = pipe(image_raw)["depth"]
|
| 733 |
-
# base_name = os.path.basename(image_path)
|
| 734 |
-
# file_name, ext = os.path.splitext(base_name)
|
| 735 |
-
|
| 736 |
-
# disp_file_name = f"{file_name}_disp.png"
|
| 737 |
-
# disp.save(disp_file_name)
|
| 738 |
-
|
| 739 |
-
# disp = np.array(disp)
|
| 740 |
-
# disp = disp.astype(np.float32)
|
| 741 |
-
# disp /= 255.0
|
| 742 |
-
|
| 743 |
-
disp = np.float32(cv2.imread(depth_map_path, cv2.IMREAD_GRAYSCALE))
|
| 744 |
-
|
| 745 |
-
disp /= 255.0
|
| 746 |
-
disp = (disp - disp.min()) / (disp.max() - disp.min())
|
| 747 |
-
min_disp = np.min(disp)
|
| 748 |
-
max_disp = np.max(disp)
|
| 749 |
-
|
| 750 |
-
device = torch.device('cuda')
|
| 751 |
-
|
| 752 |
-
# Initialize renderer
|
| 753 |
-
classical_renderer = ModuleRenderScatter().to(device)
|
| 754 |
-
|
| 755 |
-
# Load image and disparity
|
| 756 |
-
image = cv2.imread(image_path).astype(np.float32) / 255.0
|
| 757 |
-
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 758 |
-
|
| 759 |
-
# Calculate defocus
|
| 760 |
-
defocus = K * (disp - disp_focus) / 10.0
|
| 761 |
-
|
| 762 |
-
# Convert to tensors and move to GPU if available
|
| 763 |
-
image = torch.from_numpy(image).permute(2, 0, 1).unsqueeze(0).to(device)
|
| 764 |
-
|
| 765 |
-
defocus = defocus.unsqueeze(0).unsqueeze(0).to(device)
|
| 766 |
-
|
| 767 |
-
bokeh_classical, defocus_dilate = classical_renderer(image**gamma, defocus*10.0)
|
| 768 |
-
bokeh_pred = bokeh_classical ** (1/gamma)
|
| 769 |
-
bokeh_pred = bokeh_pred.squeeze(0)
|
| 770 |
-
bokeh_pred = bokeh_pred.permute(1, 2, 0) # remove batch dim and change channle order
|
| 771 |
-
bokeh_pred = (bokeh_pred * 255).cpu().numpy()
|
| 772 |
-
bokeh_pred = np.round(bokeh_pred)
|
| 773 |
-
bokeh_pred = bokeh_pred.astype(np.float32)
|
| 774 |
-
|
| 775 |
-
return bokeh_pred
|
| 776 |
-
|
| 777 |
-
|
| 778 |
-
|
| 779 |
-
|
| 780 |
-
class CameraBokehK(Dataset):
|
| 781 |
-
def __init__(
|
| 782 |
-
self,
|
| 783 |
-
root_path,
|
| 784 |
-
annotation_json,
|
| 785 |
-
sample_n_frames=5,
|
| 786 |
-
sample_size=[256, 384],
|
| 787 |
-
is_Train=True,
|
| 788 |
-
):
|
| 789 |
-
self.root_path = root_path
|
| 790 |
-
self.sample_n_frames = sample_n_frames
|
| 791 |
-
self.dataset = json.load(open(os.path.join(root_path, annotation_json), 'r'))
|
| 792 |
-
|
| 793 |
-
self.length = len(self.dataset)
|
| 794 |
-
self.is_Train = is_Train
|
| 795 |
-
sample_size = tuple(sample_size) if not isinstance(sample_size, int) else (sample_size, sample_size)
|
| 796 |
-
self.sample_size = sample_size
|
| 797 |
-
|
| 798 |
-
pixel_transforms = [transforms.Resize(sample_size),
|
| 799 |
-
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)]
|
| 800 |
-
|
| 801 |
-
self.pixel_transforms = pixel_transforms
|
| 802 |
-
self.tokenizer = CLIPTokenizer.from_pretrained("/home/yuan418/data/project/stable-diffusion-v1-5/", subfolder="tokenizer")
|
| 803 |
-
self.text_encoder = CLIPTextModel.from_pretrained("/home/yuan418/data/project/stable-diffusion-v1-5/", subfolder="text_encoder")
|
| 804 |
-
|
| 805 |
-
def load_image_reader(self, idx):
|
| 806 |
-
image_dict = self.dataset[idx]
|
| 807 |
-
|
| 808 |
-
image_path = os.path.join(self.root_path, image_dict['base_image_path'])
|
| 809 |
-
depth_map_path = os.path.join(self.root_path, image_dict['depth_map_path'])
|
| 810 |
-
|
| 811 |
-
image_caption = image_dict['caption']
|
| 812 |
-
|
| 813 |
-
|
| 814 |
-
if self.is_Train:
|
| 815 |
-
bokehK_values = [random.uniform(1.0, 30.0) for _ in range(self.sample_n_frames)]
|
| 816 |
-
print('train bokehK values', bokehK_values)
|
| 817 |
-
|
| 818 |
-
else:
|
| 819 |
-
bokehK_list_str = image_dict['bokehK_list']
|
| 820 |
-
bokehK_values = json.loads(bokehK_list_str)
|
| 821 |
-
print('validation bokehK_values', bokehK_values)
|
| 822 |
-
|
| 823 |
-
bokehK_values = torch.tensor(bokehK_values).unsqueeze(1)
|
| 824 |
-
return image_path, depth_map_path, image_caption, bokehK_values
|
| 825 |
-
|
| 826 |
-
|
| 827 |
-
def get_batch(self, idx):
|
| 828 |
-
image_path, depth_map_path, image_caption, bokehK_values = self.load_image_reader(idx)
|
| 829 |
-
|
| 830 |
-
total_frames = len(bokehK_values)
|
| 831 |
-
if total_frames < 3:
|
| 832 |
-
raise ValueError("less than 3 frames")
|
| 833 |
-
|
| 834 |
-
# Generate prompts for each bokehK value and append bokehK information to caption
|
| 835 |
-
prompts = []
|
| 836 |
-
for bb in bokehK_values:
|
| 837 |
-
prompt = f"<bokeh kernel size: {bb.item()}>"
|
| 838 |
-
prompts.append(prompt)
|
| 839 |
-
|
| 840 |
-
# Tokenize prompts and encode to get embeddings
|
| 841 |
-
with torch.no_grad():
|
| 842 |
-
prompt_ids = self.tokenizer(
|
| 843 |
-
prompts, max_length=self.tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
|
| 844 |
-
).input_ids
|
| 845 |
-
# print('tokenizer model_max_length', self.tokenizer.model_max_length)
|
| 846 |
-
|
| 847 |
-
encoder_hidden_states = self.text_encoder(input_ids=prompt_ids).last_hidden_state # Shape: (f, sequence_length, hidden_size)
|
| 848 |
-
|
| 849 |
-
# print('encoder_hidden_states shape', encoder_hidden_states.shape)
|
| 850 |
-
|
| 851 |
-
# Calculate differences between consecutive embeddings (ignoring sequence_length)
|
| 852 |
-
differences = []
|
| 853 |
-
for i in range(1, encoder_hidden_states.size(0)):
|
| 854 |
-
diff = encoder_hidden_states[i] - encoder_hidden_states[i - 1]
|
| 855 |
-
diff = diff.unsqueeze(0)
|
| 856 |
-
differences.append(diff)
|
| 857 |
-
|
| 858 |
-
# Add the difference between the last and the first embedding
|
| 859 |
-
final_diff = encoder_hidden_states[-1] - encoder_hidden_states[0]
|
| 860 |
-
final_diff = final_diff.unsqueeze(0)
|
| 861 |
-
differences.append(final_diff)
|
| 862 |
-
|
| 863 |
-
# Concatenate differences along the batch dimension (f-1)
|
| 864 |
-
concatenated_differences = torch.cat(differences, dim=0)
|
| 865 |
-
|
| 866 |
-
# print('concatenated_differences shape', concatenated_differences.shape) # f 77 768
|
| 867 |
-
|
| 868 |
-
frame = concatenated_differences.size(0)
|
| 869 |
-
|
| 870 |
-
# Concatenate differences along the batch dimension (f)
|
| 871 |
-
concatenated_differences = torch.cat(differences, dim=0)
|
| 872 |
-
|
| 873 |
-
# Current shape: (f, 77, 768), Pad the second dimension (77) to 128
|
| 874 |
-
pad_length = 128 - concatenated_differences.size(1)
|
| 875 |
-
if pad_length > 0:
|
| 876 |
-
# Pad along the second dimension (77 -> 128), pad only on the right side
|
| 877 |
-
concatenated_differences_padded = F.pad(concatenated_differences, (0, 0, 0, pad_length))
|
| 878 |
-
|
| 879 |
-
## ccl = contrastive camera learning ##
|
| 880 |
-
ccl_embedding = concatenated_differences_padded.reshape(frame, self.sample_size[0], self.sample_size[1])
|
| 881 |
-
ccl_embedding = ccl_embedding.unsqueeze(1)
|
| 882 |
-
ccl_embedding = ccl_embedding.expand(-1, 3, -1, -1)
|
| 883 |
-
# print('ccl_embedding shape', ccl_embedding.shape)
|
| 884 |
-
|
| 885 |
-
pixel_values = []
|
| 886 |
-
for bk in bokehK_values:
|
| 887 |
-
img_sim = bokehK_simulation(image_path, depth_map_path, bk, disp_focus=0.96, gamma=2.2)
|
| 888 |
-
# save_path = os.path.join(self.root_path, f"simulated_img_bokeh_{bk.item():.2f}.png")
|
| 889 |
-
# cv2.imwrite(save_path, img_sim)
|
| 890 |
-
# print(f"Saved image: {save_path}")
|
| 891 |
-
pixel_values.append(img_sim)
|
| 892 |
-
|
| 893 |
-
pixel_values = np.stack(pixel_values, axis=0)
|
| 894 |
-
pixel_values = torch.from_numpy(pixel_values).permute(0, 3, 1, 2).contiguous() / 255.
|
| 895 |
-
|
| 896 |
-
# Create bokehK embedding and concatenate it with CCL embedding
|
| 897 |
-
bokehK_embedding = create_bokehK_embedding(bokehK_values, self.sample_size[0], self.sample_size[1])
|
| 898 |
-
|
| 899 |
-
camera_embedding = torch.cat((bokehK_embedding, ccl_embedding), dim=1)
|
| 900 |
-
# print('camera_embedding shape', camera_embedding.shape)
|
| 901 |
-
|
| 902 |
-
return pixel_values, image_caption, camera_embedding, bokehK_values
|
| 903 |
-
|
| 904 |
-
def __len__(self):
|
| 905 |
-
return self.length
|
| 906 |
-
|
| 907 |
-
def __getitem__(self, idx):
|
| 908 |
-
while True:
|
| 909 |
-
try:
|
| 910 |
-
video, video_caption, camera_embedding, bokehK_values = self.get_batch(idx)
|
| 911 |
-
break
|
| 912 |
-
except Exception as e:
|
| 913 |
-
idx = random.randint(0, self.length - 1)
|
| 914 |
-
|
| 915 |
-
for transform in self.pixel_transforms:
|
| 916 |
-
video = transform(video)
|
| 917 |
-
|
| 918 |
-
sample = dict(pixel_values=video, text=video_caption, camera_embedding=camera_embedding, bokehK_values=bokehK_values)
|
| 919 |
-
|
| 920 |
-
return sample
|
| 921 |
-
|
| 922 |
-
|
| 923 |
-
|
| 924 |
-
def test_camera_bokehK_dataset():
|
| 925 |
-
root_path = '/home/yuan418/data/project/camera_dataset/camera_bokehK/'
|
| 926 |
-
annotation_json = 'annotations/inference.json'
|
| 927 |
-
|
| 928 |
-
print('------------------')
|
| 929 |
-
dataset = CameraBokehK(
|
| 930 |
-
root_path=root_path,
|
| 931 |
-
annotation_json=annotation_json,
|
| 932 |
-
sample_n_frames=4,
|
| 933 |
-
sample_size=[256, 384],
|
| 934 |
-
is_Train=False,
|
| 935 |
-
)
|
| 936 |
-
|
| 937 |
-
# choose one sample for testing
|
| 938 |
-
idx = 1
|
| 939 |
-
sample = dataset[idx]
|
| 940 |
-
|
| 941 |
-
pixel_values = sample['pixel_values']
|
| 942 |
-
text = sample['text']
|
| 943 |
-
camera_embedding = sample['camera_embedding']
|
| 944 |
-
print(f"Pixel values shape: {pixel_values.shape}")
|
| 945 |
-
print(f"Text: {text}")
|
| 946 |
-
print(f"camera embedding shape: {camera_embedding.shape}")
|
| 947 |
-
|
| 948 |
-
|
| 949 |
-
if __name__ == "__main__":
|
| 950 |
-
test_camera_bokehK_dataset()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
genphoto/models/unet.py
CHANGED
|
@@ -11,14 +11,14 @@ from einops import repeat, rearrange
|
|
| 11 |
from dataclasses import dataclass
|
| 12 |
from typing import List, Optional, Tuple, Union, Dict, Any
|
| 13 |
|
| 14 |
-
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 15 |
-
from diffusers.models.attention_processor import AttentionProcessor
|
| 16 |
-
|
| 17 |
-
from diffusers.models.modeling_utils import ModelMixin
|
| 18 |
-
from diffusers.utils import BaseOutput, logging
|
| 19 |
-
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
|
| 20 |
-
from diffusers.models.attention_processor import LoRAAttnProcessor
|
| 21 |
-
from diffusers.loaders import AttnProcsLayers, UNet2DConditionLoadersMixin
|
| 22 |
|
| 23 |
from genphoto.models.unet_blocks import (
|
| 24 |
CrossAttnDownBlock3D,
|
|
|
|
| 11 |
from dataclasses import dataclass
|
| 12 |
from typing import List, Optional, Tuple, Union, Dict, Any
|
| 13 |
|
| 14 |
+
from ..diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 15 |
+
from ..diffusers.models.attention_processor import AttentionProcessor
|
| 16 |
+
|
| 17 |
+
from ..diffusers.models.modeling_utils import ModelMixin
|
| 18 |
+
from ..diffusers.utils import BaseOutput, logging
|
| 19 |
+
from ..diffusers.models.embeddings import TimestepEmbedding, Timesteps
|
| 20 |
+
from ..diffusers.models.attention_processor import LoRAAttnProcessor
|
| 21 |
+
from ..diffusers.loaders import AttnProcsLayers, UNet2DConditionLoadersMixin
|
| 22 |
|
| 23 |
from genphoto.models.unet_blocks import (
|
| 24 |
CrossAttnDownBlock3D,
|
genphoto/pipelines/pipeline_animation.py
CHANGED
|
@@ -7,14 +7,14 @@ import numpy as np
|
|
| 7 |
|
| 8 |
from typing import Callable, List, Optional, Union
|
| 9 |
from dataclasses import dataclass
|
| 10 |
-
from diffusers.utils import is_accelerate_available
|
| 11 |
from packaging import version
|
| 12 |
from einops import rearrange
|
| 13 |
from transformers import CLIPTextModel, CLIPTokenizer
|
| 14 |
-
from diffusers.configuration_utils import FrozenDict
|
| 15 |
-
from diffusers.models import AutoencoderKL
|
| 16 |
-
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
| 17 |
-
from diffusers.schedulers import (
|
| 18 |
DDIMScheduler,
|
| 19 |
DPMSolverMultistepScheduler,
|
| 20 |
EulerAncestralDiscreteScheduler,
|
|
@@ -22,8 +22,8 @@ from diffusers.schedulers import (
|
|
| 22 |
LMSDiscreteScheduler,
|
| 23 |
PNDMScheduler,
|
| 24 |
)
|
| 25 |
-
from diffusers.loaders import LoraLoaderMixin
|
| 26 |
-
from diffusers.utils import deprecate, logging, BaseOutput
|
| 27 |
|
| 28 |
from genphoto.models.camera_adaptor import CameraCameraEncoder
|
| 29 |
from genphoto.models.unet import UNet3DConditionModel
|
|
|
|
| 7 |
|
| 8 |
from typing import Callable, List, Optional, Union
|
| 9 |
from dataclasses import dataclass
|
| 10 |
+
from ..diffusers.utils import is_accelerate_available
|
| 11 |
from packaging import version
|
| 12 |
from einops import rearrange
|
| 13 |
from transformers import CLIPTextModel, CLIPTokenizer
|
| 14 |
+
from ..diffusers.configuration_utils import FrozenDict
|
| 15 |
+
from ..diffusers.models import AutoencoderKL
|
| 16 |
+
from ..diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
| 17 |
+
from ..diffusers.schedulers import (
|
| 18 |
DDIMScheduler,
|
| 19 |
DPMSolverMultistepScheduler,
|
| 20 |
EulerAncestralDiscreteScheduler,
|
|
|
|
| 22 |
LMSDiscreteScheduler,
|
| 23 |
PNDMScheduler,
|
| 24 |
)
|
| 25 |
+
from ..diffusers.loaders import LoraLoaderMixin
|
| 26 |
+
from ..diffusers.utils import deprecate, logging, BaseOutput
|
| 27 |
|
| 28 |
from genphoto.models.camera_adaptor import CameraCameraEncoder
|
| 29 |
from genphoto.models.unet import UNet3DConditionModel
|
inference_bokehK.py
CHANGED
|
@@ -12,7 +12,7 @@ from omegaconf import OmegaConf
|
|
| 12 |
from torch.utils.data import Dataset
|
| 13 |
from transformers import CLIPTextModel, CLIPTokenizer
|
| 14 |
|
| 15 |
-
from diffusers import AutoencoderKL, DDIMScheduler
|
| 16 |
from einops import rearrange
|
| 17 |
|
| 18 |
from genphoto.pipelines.pipeline_animation import GenPhotoPipeline
|
|
|
|
| 12 |
from torch.utils.data import Dataset
|
| 13 |
from transformers import CLIPTextModel, CLIPTokenizer
|
| 14 |
|
| 15 |
+
from .diffusers import AutoencoderKL, DDIMScheduler
|
| 16 |
from einops import rearrange
|
| 17 |
|
| 18 |
from genphoto.pipelines.pipeline_animation import GenPhotoPipeline
|
inference_color_temperature.py
CHANGED
|
@@ -12,7 +12,7 @@ from omegaconf import OmegaConf
|
|
| 12 |
from torch.utils.data import Dataset
|
| 13 |
from transformers import CLIPTextModel, CLIPTokenizer
|
| 14 |
|
| 15 |
-
from diffusers import AutoencoderKL, DDIMScheduler
|
| 16 |
|
| 17 |
from einops import rearrange
|
| 18 |
|
|
|
|
| 12 |
from torch.utils.data import Dataset
|
| 13 |
from transformers import CLIPTextModel, CLIPTokenizer
|
| 14 |
|
| 15 |
+
from .diffusers import AutoencoderKL, DDIMScheduler
|
| 16 |
|
| 17 |
from einops import rearrange
|
| 18 |
|
inference_focal_length.py
CHANGED
|
@@ -12,7 +12,7 @@ from omegaconf import OmegaConf
|
|
| 12 |
from torch.utils.data import Dataset
|
| 13 |
from transformers import CLIPTextModel, CLIPTokenizer
|
| 14 |
|
| 15 |
-
from diffusers import AutoencoderKL, DDIMScheduler
|
| 16 |
|
| 17 |
|
| 18 |
from einops import rearrange
|
|
|
|
| 12 |
from torch.utils.data import Dataset
|
| 13 |
from transformers import CLIPTextModel, CLIPTokenizer
|
| 14 |
|
| 15 |
+
from .diffusers import AutoencoderKL, DDIMScheduler
|
| 16 |
|
| 17 |
|
| 18 |
from einops import rearrange
|
inference_shutter_speed.py
CHANGED
|
@@ -12,7 +12,7 @@ from omegaconf import OmegaConf
|
|
| 12 |
from torch.utils.data import Dataset
|
| 13 |
from transformers import CLIPTextModel, CLIPTokenizer
|
| 14 |
|
| 15 |
-
from diffusers import AutoencoderKL, DDIMScheduler
|
| 16 |
from einops import rearrange
|
| 17 |
|
| 18 |
from genphoto.pipelines.pipeline_animation import GenPhotoPipeline
|
|
|
|
| 12 |
from torch.utils.data import Dataset
|
| 13 |
from transformers import CLIPTextModel, CLIPTokenizer
|
| 14 |
|
| 15 |
+
from .diffusers import AutoencoderKL, DDIMScheduler
|
| 16 |
from einops import rearrange
|
| 17 |
|
| 18 |
from genphoto.pipelines.pipeline_animation import GenPhotoPipeline
|