Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import tempfile | |
import json | |
from inference_bokehK import load_models, run_inference, OmegaConf | |
import torch | |
# Initialize models once at startup | |
cfg = OmegaConf.load("configs/inference_genphoto/adv3_256_384_genphoto_relora_bokehK.yaml") | |
pipeline, device = load_models(cfg) | |
def generate_video(base_scene, bokehK_list): | |
try: | |
# Validate input | |
if len(json.loads(bokehK_list)) != 5: | |
raise ValueError("Exactly 5 Bokeh K values required") | |
# Run inference | |
video_path = run_inference( | |
pipeline=pipeline, | |
tokenizer=pipeline.tokenizer, | |
text_encoder=pipeline.text_encoder, | |
base_scene=base_scene, | |
bokehK_list=bokehK_list, | |
device=device | |
) | |
return video_path | |
except Exception as e: | |
raise gr.Error(f"Generation failed: {str(e)}") | |
# Example inputs | |
examples = [ | |
[ | |
"A young boy wearing an orange jacket is standing on a crosswalk, waiting to cross the street.", | |
"[2.5, 6.3, 10.1, 17.2, 24.0]" | |
], | |
[ | |
"A display of frozen desserts, including cupcakes and donuts, is arranged in a row on a counter.", | |
"[20.0, 18.5, 15.0, 10.5, 5.0]" | |
] | |
] | |
with gr.Blocks(title="Bokeh Effect Generator") as demo: | |
gr.Markdown("#Dynamic Bokeh Effect Generation") | |
with gr.Row(): | |
with gr.Column(): | |
scene_input = gr.Textbox( | |
label="Scene Description", | |
placeholder="Describe the scene you want to generate..." | |
) | |
bokeh_input = gr.Textbox( | |
label="Bokeh Blur Values", | |
placeholder="Enter 5 comma-separated values from 1-30 (e.g., [2.44, 8.3, 10.1, 17.2, 24.0])" | |
) | |
submit_btn = gr.Button("Generate Video", variant="primary") | |
with gr.Column(): | |
video_output = gr.Video(label="Generated Video") | |
error_output = gr.Textbox(label="Error Messages", visible=False) | |
gr.Examples( | |
examples=examples, | |
inputs=[scene_input, bokeh_input], | |
outputs=[video_output], | |
fn=generate_video, | |
cache_examples=True | |
) | |
submit_btn.click( | |
fn=generate_video, | |
inputs=[scene_input, bokeh_input], | |
outputs=[video_output], | |
) | |
if __name__ == "__main__": | |
demo.launch(share=True) | |