Spaces:
Runtime error
Runtime error
| # Copyright 2023 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import numpy as np | |
| import torch | |
| import tqdm | |
| from ...models.unet_1d import UNet1DModel | |
| from ...pipelines import DiffusionPipeline | |
| from ...utils.dummy_pt_objects import DDPMScheduler | |
| from ...utils.torch_utils import randn_tensor | |
| class ValueGuidedRLPipeline(DiffusionPipeline): | |
| r""" | |
| Pipeline for value-guided sampling from a diffusion model trained to predict sequences of states. | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | |
| implemented for all pipelines (downloading, saving, running on a particular device, etc.). | |
| Parameters: | |
| value_function ([`UNet1DModel`]): | |
| A specialized UNet for fine-tuning trajectories base on reward. | |
| unet ([`UNet1DModel`]): | |
| UNet architecture to denoise the encoded trajectories. | |
| scheduler ([`SchedulerMixin`]): | |
| A scheduler to be used in combination with `unet` to denoise the encoded trajectories. Default for this | |
| application is [`DDPMScheduler`]. | |
| env (): | |
| An environment following the OpenAI gym API to act in. For now only Hopper has pretrained models. | |
| """ | |
| def __init__( | |
| self, | |
| value_function: UNet1DModel, | |
| unet: UNet1DModel, | |
| scheduler: DDPMScheduler, | |
| env, | |
| ): | |
| super().__init__() | |
| self.value_function = value_function | |
| self.unet = unet | |
| self.scheduler = scheduler | |
| self.env = env | |
| self.data = env.get_dataset() | |
| self.means = {} | |
| for key in self.data.keys(): | |
| try: | |
| self.means[key] = self.data[key].mean() | |
| except: # noqa: E722 | |
| pass | |
| self.stds = {} | |
| for key in self.data.keys(): | |
| try: | |
| self.stds[key] = self.data[key].std() | |
| except: # noqa: E722 | |
| pass | |
| self.state_dim = env.observation_space.shape[0] | |
| self.action_dim = env.action_space.shape[0] | |
| def normalize(self, x_in, key): | |
| return (x_in - self.means[key]) / self.stds[key] | |
| def de_normalize(self, x_in, key): | |
| return x_in * self.stds[key] + self.means[key] | |
| def to_torch(self, x_in): | |
| if isinstance(x_in, dict): | |
| return {k: self.to_torch(v) for k, v in x_in.items()} | |
| elif torch.is_tensor(x_in): | |
| return x_in.to(self.unet.device) | |
| return torch.tensor(x_in, device=self.unet.device) | |
| def reset_x0(self, x_in, cond, act_dim): | |
| for key, val in cond.items(): | |
| x_in[:, key, act_dim:] = val.clone() | |
| return x_in | |
| def run_diffusion(self, x, conditions, n_guide_steps, scale): | |
| batch_size = x.shape[0] | |
| y = None | |
| for i in tqdm.tqdm(self.scheduler.timesteps): | |
| # create batch of timesteps to pass into model | |
| timesteps = torch.full((batch_size,), i, device=self.unet.device, dtype=torch.long) | |
| for _ in range(n_guide_steps): | |
| with torch.enable_grad(): | |
| x.requires_grad_() | |
| # permute to match dimension for pre-trained models | |
| y = self.value_function(x.permute(0, 2, 1), timesteps).sample | |
| grad = torch.autograd.grad([y.sum()], [x])[0] | |
| posterior_variance = self.scheduler._get_variance(i) | |
| model_std = torch.exp(0.5 * posterior_variance) | |
| grad = model_std * grad | |
| grad[timesteps < 2] = 0 | |
| x = x.detach() | |
| x = x + scale * grad | |
| x = self.reset_x0(x, conditions, self.action_dim) | |
| prev_x = self.unet(x.permute(0, 2, 1), timesteps).sample.permute(0, 2, 1) | |
| # TODO: verify deprecation of this kwarg | |
| x = self.scheduler.step(prev_x, i, x, predict_epsilon=False)["prev_sample"] | |
| # apply conditions to the trajectory (set the initial state) | |
| x = self.reset_x0(x, conditions, self.action_dim) | |
| x = self.to_torch(x) | |
| return x, y | |
| def __call__(self, obs, batch_size=64, planning_horizon=32, n_guide_steps=2, scale=0.1): | |
| # normalize the observations and create batch dimension | |
| obs = self.normalize(obs, "observations") | |
| obs = obs[None].repeat(batch_size, axis=0) | |
| conditions = {0: self.to_torch(obs)} | |
| shape = (batch_size, planning_horizon, self.state_dim + self.action_dim) | |
| # generate initial noise and apply our conditions (to make the trajectories start at current state) | |
| x1 = randn_tensor(shape, device=self.unet.device) | |
| x = self.reset_x0(x1, conditions, self.action_dim) | |
| x = self.to_torch(x) | |
| # run the diffusion process | |
| x, y = self.run_diffusion(x, conditions, n_guide_steps, scale) | |
| # sort output trajectories by value | |
| sorted_idx = y.argsort(0, descending=True).squeeze() | |
| sorted_values = x[sorted_idx] | |
| actions = sorted_values[:, :, : self.action_dim] | |
| actions = actions.detach().cpu().numpy() | |
| denorm_actions = self.de_normalize(actions, key="actions") | |
| # select the action with the highest value | |
| if y is not None: | |
| selected_index = 0 | |
| else: | |
| # if we didn't run value guiding, select a random action | |
| selected_index = np.random.randint(0, batch_size) | |
| denorm_actions = denorm_actions[selected_index, 0] | |
| return denorm_actions | |