Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import tempfile | |
| import json | |
| from inference_bokehK import load_models, run_inference, OmegaConf | |
| import torch | |
| # Initialize models once at startup | |
| cfg = OmegaConf.load("configs/inference_genphoto/adv3_256_384_genphoto_relora_bokehK.yaml") | |
| pipeline, device = load_models(cfg) | |
| def generate_video(base_scene, bokehK_list): | |
| try: | |
| # Validate input | |
| if len(json.loads(bokehK_list)) != 5: | |
| raise ValueError("Exactly 5 Bokeh K values required") | |
| # Run inference | |
| video_path = run_inference( | |
| pipeline=pipeline, | |
| tokenizer=pipeline.tokenizer, | |
| text_encoder=pipeline.text_encoder, | |
| base_scene=base_scene, | |
| bokehK_list=bokehK_list, | |
| device=device | |
| ) | |
| return video_path | |
| except Exception as e: | |
| raise gr.Error(f"Generation failed: {str(e)}") | |
| # Example inputs | |
| examples = [ | |
| [ | |
| "A young boy wearing an orange jacket is standing on a crosswalk, waiting to cross the street.", | |
| "[2.5, 6.3, 10.1, 17.2, 24.0]" | |
| ], | |
| [ | |
| "A display of frozen desserts, including cupcakes and donuts, is arranged in a row on a counter.", | |
| "[20.0, 18.5, 15.0, 10.5, 5.0]" | |
| ] | |
| ] | |
| with gr.Blocks(title="Bokeh Effect Generator") as demo: | |
| gr.Markdown("#Dynamic Bokeh Effect Generation") | |
| with gr.Row(): | |
| with gr.Column(): | |
| scene_input = gr.Textbox( | |
| label="Scene Description", | |
| placeholder="Describe the scene you want to generate..." | |
| ) | |
| bokeh_input = gr.Textbox( | |
| label="Bokeh Blur Values", | |
| placeholder="Enter 5 comma-separated values from 1-30 (e.g., [2.44, 8.3, 10.1, 17.2, 24.0])" | |
| ) | |
| submit_btn = gr.Button("Generate Video", variant="primary") | |
| with gr.Column(): | |
| video_output = gr.Video(label="Generated Video") | |
| error_output = gr.Textbox(label="Error Messages", visible=False) | |
| gr.Examples( | |
| examples=examples, | |
| inputs=[scene_input, bokeh_input], | |
| outputs=[video_output], | |
| fn=generate_video, | |
| cache_examples=True | |
| ) | |
| submit_btn.click( | |
| fn=generate_video, | |
| inputs=[scene_input, bokeh_input], | |
| outputs=[video_output], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch(share=True) | |