File size: 22,866 Bytes
a7d4f3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
import math
from dataclasses import dataclass
from typing import Dict, Tuple, Union

import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn

from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, logging
from .attention_processor import AttentionProcessor, Kandi3AttnProcessor
from .embeddings import TimestepEmbedding
from .modeling_utils import ModelMixin


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


@dataclass
class Kandinsky3UNetOutput(BaseOutput):
    sample: torch.FloatTensor = None


# TODO(Yiyi): This class needs to be removed
def set_default_item(condition, item_1, item_2=None):
    if condition:
        return item_1
    else:
        return item_2


# TODO(Yiyi): This class needs to be removed
def set_default_layer(condition, layer_1, args_1=[], kwargs_1={}, layer_2=torch.nn.Identity, args_2=[], kwargs_2={}):
    if condition:
        return layer_1(*args_1, **kwargs_1)
    else:
        return layer_2(*args_2, **kwargs_2)


# TODO(Yiyi): This class should be removed and be replaced by Timesteps
class SinusoidalPosEmb(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.dim = dim

    def forward(self, x, type_tensor=None):
        half_dim = self.dim // 2
        emb = math.log(10000) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim, device=x.device) * -emb)
        emb = x[:, None] * emb[None, :]
        return torch.cat((emb.sin(), emb.cos()), dim=-1)


class Kandinsky3EncoderProj(nn.Module):
    def __init__(self, encoder_hid_dim, cross_attention_dim):
        super().__init__()
        self.projection_linear = nn.Linear(encoder_hid_dim, cross_attention_dim, bias=False)
        self.projection_norm = nn.LayerNorm(cross_attention_dim)

    def forward(self, x):
        x = self.projection_linear(x)
        x = self.projection_norm(x)
        return x


class Kandinsky3UNet(ModelMixin, ConfigMixin):
    @register_to_config
    def __init__(
        self,
        in_channels: int = 4,
        time_embedding_dim: int = 1536,
        groups: int = 32,
        attention_head_dim: int = 64,
        layers_per_block: Union[int, Tuple[int]] = 3,
        block_out_channels: Tuple[int] = (384, 768, 1536, 3072),
        cross_attention_dim: Union[int, Tuple[int]] = 4096,
        encoder_hid_dim: int = 4096,
    ):
        super().__init__()

        # TOOD(Yiyi): Give better name and put into config for the following 4 parameters
        expansion_ratio = 4
        compression_ratio = 2
        add_cross_attention = (False, True, True, True)
        add_self_attention = (False, True, True, True)

        out_channels = in_channels
        init_channels = block_out_channels[0] // 2
        # TODO(Yiyi): Should be replaced with Timesteps class -> make sure that results are the same
        # self.time_proj = Timesteps(init_channels, flip_sin_to_cos=False, downscale_freq_shift=1)
        self.time_proj = SinusoidalPosEmb(init_channels)

        self.time_embedding = TimestepEmbedding(
            init_channels,
            time_embedding_dim,
        )

        self.add_time_condition = Kandinsky3AttentionPooling(
            time_embedding_dim, cross_attention_dim, attention_head_dim
        )

        self.conv_in = nn.Conv2d(in_channels, init_channels, kernel_size=3, padding=1)

        self.encoder_hid_proj = Kandinsky3EncoderProj(encoder_hid_dim, cross_attention_dim)

        hidden_dims = [init_channels] + list(block_out_channels)
        in_out_dims = list(zip(hidden_dims[:-1], hidden_dims[1:]))
        text_dims = [set_default_item(is_exist, cross_attention_dim) for is_exist in add_cross_attention]
        num_blocks = len(block_out_channels) * [layers_per_block]
        layer_params = [num_blocks, text_dims, add_self_attention]
        rev_layer_params = map(reversed, layer_params)

        cat_dims = []
        self.num_levels = len(in_out_dims)
        self.down_blocks = nn.ModuleList([])
        for level, ((in_dim, out_dim), res_block_num, text_dim, self_attention) in enumerate(
            zip(in_out_dims, *layer_params)
        ):
            down_sample = level != (self.num_levels - 1)
            cat_dims.append(set_default_item(level != (self.num_levels - 1), out_dim, 0))
            self.down_blocks.append(
                Kandinsky3DownSampleBlock(
                    in_dim,
                    out_dim,
                    time_embedding_dim,
                    text_dim,
                    res_block_num,
                    groups,
                    attention_head_dim,
                    expansion_ratio,
                    compression_ratio,
                    down_sample,
                    self_attention,
                )
            )

        self.up_blocks = nn.ModuleList([])
        for level, ((out_dim, in_dim), res_block_num, text_dim, self_attention) in enumerate(
            zip(reversed(in_out_dims), *rev_layer_params)
        ):
            up_sample = level != 0
            self.up_blocks.append(
                Kandinsky3UpSampleBlock(
                    in_dim,
                    cat_dims.pop(),
                    out_dim,
                    time_embedding_dim,
                    text_dim,
                    res_block_num,
                    groups,
                    attention_head_dim,
                    expansion_ratio,
                    compression_ratio,
                    up_sample,
                    self_attention,
                )
            )

        self.conv_norm_out = nn.GroupNorm(groups, init_channels)
        self.conv_act_out = nn.SiLU()
        self.conv_out = nn.Conv2d(init_channels, out_channels, kernel_size=3, padding=1)

    @property
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
            if hasattr(module, "set_processor"):
                processors[f"{name}.processor"] = module.processor

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
        r"""
        Sets the attention processor to use to compute attention.

        Parameters:
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))

            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)

    def set_default_attn_processor(self):
        """
        Disables custom attention processors and sets the default attention implementation.
        """
        self.set_attn_processor(Kandi3AttnProcessor())

    def _set_gradient_checkpointing(self, module, value=False):
        if hasattr(module, "gradient_checkpointing"):
            module.gradient_checkpointing = value

    def forward(self, sample, timestep, encoder_hidden_states=None, encoder_attention_mask=None, return_dict=True):
        # TODO(Yiyi): Clean up the following variables - these names should not be used
        # but instead only the ones that we pass to forward
        x = sample
        context_mask = encoder_attention_mask
        context = encoder_hidden_states

        if not torch.is_tensor(timestep):
            dtype = torch.float32 if isinstance(timestep, float) else torch.int32
            timestep = torch.tensor([timestep], dtype=dtype, device=sample.device)
        elif len(timestep.shape) == 0:
            timestep = timestep[None].to(sample.device)

        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
        timestep = timestep.expand(sample.shape[0])
        time_embed_input = self.time_proj(timestep).to(x.dtype)
        time_embed = self.time_embedding(time_embed_input)

        context = self.encoder_hid_proj(context)

        if context is not None:
            time_embed = self.add_time_condition(time_embed, context, context_mask)

        hidden_states = []
        x = self.conv_in(x)
        for level, down_sample in enumerate(self.down_blocks):
            x = down_sample(x, time_embed, context, context_mask)
            if level != self.num_levels - 1:
                hidden_states.append(x)

        for level, up_sample in enumerate(self.up_blocks):
            if level != 0:
                x = torch.cat([x, hidden_states.pop()], dim=1)
            x = up_sample(x, time_embed, context, context_mask)

        x = self.conv_norm_out(x)
        x = self.conv_act_out(x)
        x = self.conv_out(x)

        if not return_dict:
            return (x,)
        return Kandinsky3UNetOutput(sample=x)


class Kandinsky3UpSampleBlock(nn.Module):
    def __init__(
        self,
        in_channels,
        cat_dim,
        out_channels,
        time_embed_dim,
        context_dim=None,
        num_blocks=3,
        groups=32,
        head_dim=64,
        expansion_ratio=4,
        compression_ratio=2,
        up_sample=True,
        self_attention=True,
    ):
        super().__init__()
        up_resolutions = [[None, set_default_item(up_sample, True), None, None]] + [[None] * 4] * (num_blocks - 1)
        hidden_channels = (
            [(in_channels + cat_dim, in_channels)]
            + [(in_channels, in_channels)] * (num_blocks - 2)
            + [(in_channels, out_channels)]
        )
        attentions = []
        resnets_in = []
        resnets_out = []

        self.self_attention = self_attention
        self.context_dim = context_dim

        attentions.append(
            set_default_layer(
                self_attention,
                Kandinsky3AttentionBlock,
                (out_channels, time_embed_dim, None, groups, head_dim, expansion_ratio),
                layer_2=nn.Identity,
            )
        )

        for (in_channel, out_channel), up_resolution in zip(hidden_channels, up_resolutions):
            resnets_in.append(
                Kandinsky3ResNetBlock(in_channel, in_channel, time_embed_dim, groups, compression_ratio, up_resolution)
            )
            attentions.append(
                set_default_layer(
                    context_dim is not None,
                    Kandinsky3AttentionBlock,
                    (in_channel, time_embed_dim, context_dim, groups, head_dim, expansion_ratio),
                    layer_2=nn.Identity,
                )
            )
            resnets_out.append(
                Kandinsky3ResNetBlock(in_channel, out_channel, time_embed_dim, groups, compression_ratio)
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets_in = nn.ModuleList(resnets_in)
        self.resnets_out = nn.ModuleList(resnets_out)

    def forward(self, x, time_embed, context=None, context_mask=None, image_mask=None):
        for attention, resnet_in, resnet_out in zip(self.attentions[1:], self.resnets_in, self.resnets_out):
            x = resnet_in(x, time_embed)
            if self.context_dim is not None:
                x = attention(x, time_embed, context, context_mask, image_mask)
            x = resnet_out(x, time_embed)

        if self.self_attention:
            x = self.attentions[0](x, time_embed, image_mask=image_mask)
        return x


class Kandinsky3DownSampleBlock(nn.Module):
    def __init__(
        self,
        in_channels,
        out_channels,
        time_embed_dim,
        context_dim=None,
        num_blocks=3,
        groups=32,
        head_dim=64,
        expansion_ratio=4,
        compression_ratio=2,
        down_sample=True,
        self_attention=True,
    ):
        super().__init__()
        attentions = []
        resnets_in = []
        resnets_out = []

        self.self_attention = self_attention
        self.context_dim = context_dim

        attentions.append(
            set_default_layer(
                self_attention,
                Kandinsky3AttentionBlock,
                (in_channels, time_embed_dim, None, groups, head_dim, expansion_ratio),
                layer_2=nn.Identity,
            )
        )

        up_resolutions = [[None] * 4] * (num_blocks - 1) + [[None, None, set_default_item(down_sample, False), None]]
        hidden_channels = [(in_channels, out_channels)] + [(out_channels, out_channels)] * (num_blocks - 1)
        for (in_channel, out_channel), up_resolution in zip(hidden_channels, up_resolutions):
            resnets_in.append(
                Kandinsky3ResNetBlock(in_channel, out_channel, time_embed_dim, groups, compression_ratio)
            )
            attentions.append(
                set_default_layer(
                    context_dim is not None,
                    Kandinsky3AttentionBlock,
                    (out_channel, time_embed_dim, context_dim, groups, head_dim, expansion_ratio),
                    layer_2=nn.Identity,
                )
            )
            resnets_out.append(
                Kandinsky3ResNetBlock(
                    out_channel, out_channel, time_embed_dim, groups, compression_ratio, up_resolution
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets_in = nn.ModuleList(resnets_in)
        self.resnets_out = nn.ModuleList(resnets_out)

    def forward(self, x, time_embed, context=None, context_mask=None, image_mask=None):
        if self.self_attention:
            x = self.attentions[0](x, time_embed, image_mask=image_mask)

        for attention, resnet_in, resnet_out in zip(self.attentions[1:], self.resnets_in, self.resnets_out):
            x = resnet_in(x, time_embed)
            if self.context_dim is not None:
                x = attention(x, time_embed, context, context_mask, image_mask)
            x = resnet_out(x, time_embed)
        return x


class Kandinsky3ConditionalGroupNorm(nn.Module):
    def __init__(self, groups, normalized_shape, context_dim):
        super().__init__()
        self.norm = nn.GroupNorm(groups, normalized_shape, affine=False)
        self.context_mlp = nn.Sequential(nn.SiLU(), nn.Linear(context_dim, 2 * normalized_shape))
        self.context_mlp[1].weight.data.zero_()
        self.context_mlp[1].bias.data.zero_()

    def forward(self, x, context):
        context = self.context_mlp(context)

        for _ in range(len(x.shape[2:])):
            context = context.unsqueeze(-1)

        scale, shift = context.chunk(2, dim=1)
        x = self.norm(x) * (scale + 1.0) + shift
        return x


# TODO(Yiyi): This class should ideally not even exist, it slows everything needlessly down. I'm pretty
# sure we can delete it and instead just pass an attention_mask
class Attention(nn.Module):
    def __init__(self, in_channels, out_channels, context_dim, head_dim=64):
        super().__init__()
        assert out_channels % head_dim == 0
        self.num_heads = out_channels // head_dim
        self.scale = head_dim**-0.5

        # to_q
        self.to_q = nn.Linear(in_channels, out_channels, bias=False)
        # to_k
        self.to_k = nn.Linear(context_dim, out_channels, bias=False)
        # to_v
        self.to_v = nn.Linear(context_dim, out_channels, bias=False)
        processor = Kandi3AttnProcessor()
        self.set_processor(processor)
        # to_out
        self.to_out = nn.ModuleList([])
        self.to_out.append(nn.Linear(out_channels, out_channels, bias=False))

    def set_processor(self, processor: "AttnProcessor"):  # noqa: F821
        # if current processor is in `self._modules` and if passed `processor` is not, we need to
        # pop `processor` from `self._modules`
        if (
            hasattr(self, "processor")
            and isinstance(self.processor, torch.nn.Module)
            and not isinstance(processor, torch.nn.Module)
        ):
            logger.info(f"You are removing possibly trained weights of {self.processor} with {processor}")
            self._modules.pop("processor")

        self.processor = processor

    def forward(self, x, context, context_mask=None, image_mask=None):
        return self.processor(
            self,
            x,
            context=context,
            context_mask=context_mask,
        )


class Kandinsky3Block(nn.Module):
    def __init__(self, in_channels, out_channels, time_embed_dim, kernel_size=3, norm_groups=32, up_resolution=None):
        super().__init__()
        self.group_norm = Kandinsky3ConditionalGroupNorm(norm_groups, in_channels, time_embed_dim)
        self.activation = nn.SiLU()
        self.up_sample = set_default_layer(
            up_resolution is not None and up_resolution,
            nn.ConvTranspose2d,
            (in_channels, in_channels),
            {"kernel_size": 2, "stride": 2},
        )
        padding = int(kernel_size > 1)
        self.projection = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=padding)
        self.down_sample = set_default_layer(
            up_resolution is not None and not up_resolution,
            nn.Conv2d,
            (out_channels, out_channels),
            {"kernel_size": 2, "stride": 2},
        )

    def forward(self, x, time_embed):
        x = self.group_norm(x, time_embed)
        x = self.activation(x)
        x = self.up_sample(x)
        x = self.projection(x)
        x = self.down_sample(x)
        return x


class Kandinsky3ResNetBlock(nn.Module):
    def __init__(
        self, in_channels, out_channels, time_embed_dim, norm_groups=32, compression_ratio=2, up_resolutions=4 * [None]
    ):
        super().__init__()
        kernel_sizes = [1, 3, 3, 1]
        hidden_channel = max(in_channels, out_channels) // compression_ratio
        hidden_channels = (
            [(in_channels, hidden_channel)] + [(hidden_channel, hidden_channel)] * 2 + [(hidden_channel, out_channels)]
        )
        self.resnet_blocks = nn.ModuleList(
            [
                Kandinsky3Block(in_channel, out_channel, time_embed_dim, kernel_size, norm_groups, up_resolution)
                for (in_channel, out_channel), kernel_size, up_resolution in zip(
                    hidden_channels, kernel_sizes, up_resolutions
                )
            ]
        )
        self.shortcut_up_sample = set_default_layer(
            True in up_resolutions, nn.ConvTranspose2d, (in_channels, in_channels), {"kernel_size": 2, "stride": 2}
        )
        self.shortcut_projection = set_default_layer(
            in_channels != out_channels, nn.Conv2d, (in_channels, out_channels), {"kernel_size": 1}
        )
        self.shortcut_down_sample = set_default_layer(
            False in up_resolutions, nn.Conv2d, (out_channels, out_channels), {"kernel_size": 2, "stride": 2}
        )

    def forward(self, x, time_embed):
        out = x
        for resnet_block in self.resnet_blocks:
            out = resnet_block(out, time_embed)

        x = self.shortcut_up_sample(x)
        x = self.shortcut_projection(x)
        x = self.shortcut_down_sample(x)
        x = x + out
        return x


class Kandinsky3AttentionPooling(nn.Module):
    def __init__(self, num_channels, context_dim, head_dim=64):
        super().__init__()
        self.attention = Attention(context_dim, num_channels, context_dim, head_dim)

    def forward(self, x, context, context_mask=None):
        context = self.attention(context.mean(dim=1, keepdim=True), context, context_mask)
        return x + context.squeeze(1)


class Kandinsky3AttentionBlock(nn.Module):
    def __init__(self, num_channels, time_embed_dim, context_dim=None, norm_groups=32, head_dim=64, expansion_ratio=4):
        super().__init__()
        self.in_norm = Kandinsky3ConditionalGroupNorm(norm_groups, num_channels, time_embed_dim)
        self.attention = Attention(num_channels, num_channels, context_dim or num_channels, head_dim)

        hidden_channels = expansion_ratio * num_channels
        self.out_norm = Kandinsky3ConditionalGroupNorm(norm_groups, num_channels, time_embed_dim)
        self.feed_forward = nn.Sequential(
            nn.Conv2d(num_channels, hidden_channels, kernel_size=1, bias=False),
            nn.SiLU(),
            nn.Conv2d(hidden_channels, num_channels, kernel_size=1, bias=False),
        )

    def forward(self, x, time_embed, context=None, context_mask=None, image_mask=None):
        height, width = x.shape[-2:]
        out = self.in_norm(x, time_embed)
        out = out.reshape(x.shape[0], -1, height * width).permute(0, 2, 1)
        context = context if context is not None else out

        if image_mask is not None:
            mask_height, mask_width = image_mask.shape[-2:]
            kernel_size = (mask_height // height, mask_width // width)
            image_mask = F.max_pool2d(image_mask, kernel_size, kernel_size)
            image_mask = image_mask.reshape(image_mask.shape[0], -1)

        out = self.attention(out, context, context_mask, image_mask)
        out = out.permute(0, 2, 1).unsqueeze(-1).reshape(out.shape[0], -1, height, width)
        x = x + out

        out = self.out_norm(x, time_embed)
        out = self.feed_forward(out)
        x = x + out
        return x