File size: 5,511 Bytes
a7d4f3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Dict, Optional, Tuple

import torch
import torch.nn as nn
import torch.nn.functional as F

from .activations import get_activation
from .embeddings import CombinedTimestepLabelEmbeddings, CombinedTimestepSizeEmbeddings


class AdaLayerNorm(nn.Module):
    r"""
    Norm layer modified to incorporate timestep embeddings.

    Parameters:
        embedding_dim (`int`): The size of each embedding vector.
        num_embeddings (`int`): The size of the embeddings dictionary.
    """

    def __init__(self, embedding_dim: int, num_embeddings: int):
        super().__init__()
        self.emb = nn.Embedding(num_embeddings, embedding_dim)
        self.silu = nn.SiLU()
        self.linear = nn.Linear(embedding_dim, embedding_dim * 2)
        self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False)

    def forward(self, x: torch.Tensor, timestep: torch.Tensor) -> torch.Tensor:
        emb = self.linear(self.silu(self.emb(timestep)))
        scale, shift = torch.chunk(emb, 2)
        x = self.norm(x) * (1 + scale) + shift
        return x


class AdaLayerNormZero(nn.Module):
    r"""
    Norm layer adaptive layer norm zero (adaLN-Zero).

    Parameters:
        embedding_dim (`int`): The size of each embedding vector.
        num_embeddings (`int`): The size of the embeddings dictionary.
    """

    def __init__(self, embedding_dim: int, num_embeddings: int):
        super().__init__()

        self.emb = CombinedTimestepLabelEmbeddings(num_embeddings, embedding_dim)

        self.silu = nn.SiLU()
        self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True)
        self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)

    def forward(
        self,
        x: torch.Tensor,
        timestep: torch.Tensor,
        class_labels: torch.LongTensor,
        hidden_dtype: Optional[torch.dtype] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
        emb = self.linear(self.silu(self.emb(timestep, class_labels, hidden_dtype=hidden_dtype)))
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=1)
        x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
        return x, gate_msa, shift_mlp, scale_mlp, gate_mlp


class AdaLayerNormSingle(nn.Module):
    r"""
    Norm layer adaptive layer norm single (adaLN-single).

    As proposed in PixArt-Alpha (see: https://arxiv.org/abs/2310.00426; Section 2.3).

    Parameters:
        embedding_dim (`int`): The size of each embedding vector.
        use_additional_conditions (`bool`): To use additional conditions for normalization or not.
    """

    def __init__(self, embedding_dim: int, use_additional_conditions: bool = False):
        super().__init__()

        self.emb = CombinedTimestepSizeEmbeddings(
            embedding_dim, size_emb_dim=embedding_dim // 3, use_additional_conditions=use_additional_conditions
        )

        self.silu = nn.SiLU()
        self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True)

    def forward(
        self,
        timestep: torch.Tensor,
        added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
        batch_size: Optional[int] = None,
        hidden_dtype: Optional[torch.dtype] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
        # No modulation happening here.
        embedded_timestep = self.emb(timestep, **added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_dtype)
        return self.linear(self.silu(embedded_timestep)), embedded_timestep


class AdaGroupNorm(nn.Module):
    r"""
    GroupNorm layer modified to incorporate timestep embeddings.

    Parameters:
        embedding_dim (`int`): The size of each embedding vector.
        num_embeddings (`int`): The size of the embeddings dictionary.
        num_groups (`int`): The number of groups to separate the channels into.
        act_fn (`str`, *optional*, defaults to `None`): The activation function to use.
        eps (`float`, *optional*, defaults to `1e-5`): The epsilon value to use for numerical stability.
    """

    def __init__(
        self, embedding_dim: int, out_dim: int, num_groups: int, act_fn: Optional[str] = None, eps: float = 1e-5
    ):
        super().__init__()
        self.num_groups = num_groups
        self.eps = eps

        if act_fn is None:
            self.act = None
        else:
            self.act = get_activation(act_fn)

        self.linear = nn.Linear(embedding_dim, out_dim * 2)

    def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor:
        if self.act:
            emb = self.act(emb)
        emb = self.linear(emb)
        emb = emb[:, :, None, None]
        scale, shift = emb.chunk(2, dim=1)

        x = F.group_norm(x, self.num_groups, eps=self.eps)
        x = x * (1 + scale) + shift
        return x