Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,511 Bytes
1ae4e5b 1201269 9659e37 1ae4e5b cc3773d 1ae4e5b cc3773d 1ae4e5b cc3773d 1ae4e5b cc3773d 1ae4e5b cc3773d 1ae4e5b cc3773d 1ae4e5b cc3773d 1ae4e5b cc3773d 1ae4e5b cc3773d 1ae4e5b cc3773d 1ae4e5b cc3773d 1ae4e5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import tempfile
import imageio
import os
import torch
import logging
import argparse
import json
import numpy as np
import torch.nn.functional as F
from pathlib import Path
from omegaconf import OmegaConf
from torch.utils.data import Dataset
from transformers import CLIPTextModel, CLIPTokenizer
from ddiffusers import AutoencoderKL, DDIMScheduler
from einops import rearrange
from genphoto.pipelines.pipeline_animation import GenPhotoPipeline
from genphoto.models.unet import UNet3DConditionModelCameraCond
from genphoto.models.camera_adaptor import CameraCameraEncoder, CameraAdaptor
from genphoto.utils.util import save_videos_grid
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def create_bokehK_embedding(bokehK_values, target_height, target_width):
f = bokehK_values.shape[0]
bokehK_embedding = torch.zeros((f, 3, target_height, target_width), dtype=bokehK_values.dtype)
for i in range(f):
K_value = bokehK_values[i].item()
kernel_size = max(K_value, 1)
sigma = K_value / 3.0
ax = np.linspace(-(kernel_size / 2), kernel_size / 2, int(np.ceil(kernel_size)))
xx, yy = np.meshgrid(ax, ax)
kernel = np.exp(-(xx ** 2 + yy ** 2) / (2 * sigma ** 2))
kernel /= np.sum(kernel)
scale = kernel[int(np.ceil(kernel_size) / 2), int(np.ceil(kernel_size) / 2)]
bokehK_embedding[i] = scale
return bokehK_embedding
class Camera_Embedding(Dataset):
def __init__(self, bokehK_values, tokenizer, text_encoder, device, sample_size=[256, 384]):
self.bokehK_values = bokehK_values.to(device)
self.tokenizer = tokenizer
self.text_encoder = text_encoder
self.device = device
self.sample_size = sample_size
def load(self):
if len(self.bokehK_values) != 5:
raise ValueError("Expected 5 bokehK values")
prompts = []
for bb in self.bokehK_values:
prompt = f"<bokeh kernel size: {bb.item()}>"
prompts.append(prompt)
with torch.no_grad():
prompt_ids = self.tokenizer(
prompts, max_length=self.tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
).input_ids.to(self.device)
encoder_hidden_states = self.text_encoder(input_ids=prompt_ids).last_hidden_state
differences = []
for i in range(1, encoder_hidden_states.size(0)):
diff = encoder_hidden_states[i] - encoder_hidden_states[i - 1]
diff = diff.unsqueeze(0)
differences.append(diff)
final_diff = encoder_hidden_states[-1] - encoder_hidden_states[0]
final_diff = final_diff.unsqueeze(0)
differences.append(final_diff)
concatenated_differences = torch.cat(differences, dim=0)
pad_length = 128 - concatenated_differences.size(1)
if pad_length > 0:
concatenated_differences_padded = F.pad(concatenated_differences, (0, 0, 0, pad_length))
ccl_embedding = concatenated_differences_padded.reshape(
concatenated_differences_padded.size(0), self.sample_size[0], self.sample_size[1]
).unsqueeze(1).expand(-1, 3, -1, -1).to(self.device)
bokehK_embedding = create_bokehK_embedding(self.bokehK_values, self.sample_size[0], self.sample_size[1]).to(self.device)
camera_embedding = torch.cat((bokehK_embedding, ccl_embedding), dim=1)
return camera_embedding
def load_models(cfg):
device = "cuda" if torch.cuda.is_available() else "cpu"
noise_scheduler = DDIMScheduler(**OmegaConf.to_container(cfg.noise_scheduler_kwargs))
vae = AutoencoderKL.from_pretrained(cfg.pretrained_model_path, subfolder="vae").to(device)
vae.requires_grad_(False)
tokenizer = CLIPTokenizer.from_pretrained(cfg.pretrained_model_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(cfg.pretrained_model_path, subfolder="text_encoder").to(device)
text_encoder.requires_grad_(False)
unet = UNet3DConditionModelCameraCond.from_pretrained_2d(
cfg.pretrained_model_path,
subfolder=cfg.unet_subfolder,
unet_additional_kwargs=cfg.unet_additional_kwargs
).to(device)
unet.requires_grad_(False)
camera_encoder = CameraCameraEncoder(**cfg.camera_encoder_kwargs).to(device)
camera_encoder.requires_grad_(False)
camera_adaptor = CameraAdaptor(unet, camera_encoder)
camera_adaptor.requires_grad_(False)
camera_adaptor.to(device)
unet.set_all_attn_processor(
add_spatial_lora=cfg.lora_ckpt is not None,
add_motion_lora=cfg.motion_lora_rank > 0,
lora_kwargs={"lora_rank": cfg.lora_rank, "lora_scale": cfg.lora_scale},
motion_lora_kwargs={"lora_rank": cfg.motion_lora_rank, "lora_scale": cfg.motion_lora_scale},
**cfg.attention_processor_kwargs
)
if cfg.lora_ckpt is not None:
lora_checkpoints = torch.load(cfg.lora_ckpt, map_location=unet.device)
if 'lora_state_dict' in lora_checkpoints.keys():
lora_checkpoints = lora_checkpoints['lora_state_dict']
_, lora_u = unet.load_state_dict(lora_checkpoints, strict=False)
assert len(lora_u) == 0
if cfg.motion_module_ckpt is not None:
mm_checkpoints = torch.load(cfg.motion_module_ckpt, map_location=unet.device)
_, mm_u = unet.load_state_dict(mm_checkpoints, strict=False)
assert len(mm_u) == 0
if cfg.camera_adaptor_ckpt is not None:
camera_adaptor_checkpoint = torch.load(cfg.camera_adaptor_ckpt, map_location=device)
camera_encoder_state_dict = camera_adaptor_checkpoint['camera_encoder_state_dict']
attention_processor_state_dict = camera_adaptor_checkpoint['attention_processor_state_dict']
camera_enc_m, camera_enc_u = camera_adaptor.camera_encoder.load_state_dict(camera_encoder_state_dict, strict=False)
assert len(camera_enc_m) == 0 and len(camera_enc_u) == 0
_, attention_processor_u = camera_adaptor.unet.load_state_dict(attention_processor_state_dict, strict=False)
assert len(attention_processor_u) == 0
pipeline = GenPhotoPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=noise_scheduler,
camera_encoder=camera_encoder
).to(device)
pipeline.enable_vae_slicing()
return pipeline, device
def run_inference(pipeline, tokenizer, text_encoder, base_scene, bokehK_list, device, video_length=5, height=256, width=384):
bokehK_values = json.loads(bokehK_list)
bokehK_values = torch.tensor(bokehK_values).unsqueeze(1)
camera_embedding = Camera_Embedding(bokehK_values, tokenizer, text_encoder, device).load()
camera_embedding = rearrange(camera_embedding.unsqueeze(0), "b f c h w -> b c f h w")
with torch.no_grad():
sample = pipeline(
prompt=base_scene,
camera_embedding=camera_embedding,
video_length=video_length,
height=height,
width=width,
num_inference_steps=25,
guidance_scale=8.0
).videos[0].cpu()
temporal_video_path = tempfile.NamedTemporaryFile(suffix='.mp4').name
save_videos_grid(sample[None], temporal_video_path, rescale=False)
return temporal_video_path
def main(config_path, base_scene, bokehK_list):
torch.manual_seed(42)
cfg = OmegaConf.load(config_path)
logger.info("Loading models...")
pipeline, device = load_models(cfg)
logger.info("Starting inference...")
video_path = run_inference(pipeline, pipeline.tokenizer, pipeline.text_encoder, base_scene, bokehK_list, device)
logger.info(f"Video saved to {video_path}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, required=True, help="Path to YAML configuration file")
parser.add_argument("--base_scene", type=str, required=True, help="Scene description")
parser.add_argument("--bokehK_list", type=str, required=True, help="Comma-separated Bokeh K values")
args = parser.parse_args()
main(args.config, args.base_scene, args.bokehK_list)
## example
## python inference_bokehK.py --config configs/inference_genphoto/adv3_256_384_genphoto_relora_bokehK.yaml --base_scene "A young boy wearing an orange jacket is standing on a crosswalk, waiting to cross the street." --bokehK_list "[2.44, 8.3, 10.1, 17.2, 24.0]"
|