File size: 8,511 Bytes
1ae4e5b
 
 
 
 
 
 
 
 
 
 
 
 
1201269
9659e37
1ae4e5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc3773d
1ae4e5b
 
 
 
cc3773d
1ae4e5b
cc3773d
 
1ae4e5b
 
cc3773d
1ae4e5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc3773d
1ae4e5b
 
 
 
 
 
cc3773d
1ae4e5b
 
cc3773d
1ae4e5b
cc3773d
1ae4e5b
 
 
 
 
 
cc3773d
1ae4e5b
 
 
 
 
 
 
 
 
cc3773d
1ae4e5b
 
cc3773d
 
1ae4e5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import tempfile
import imageio
import os
import torch
import logging
import argparse
import json
import numpy as np
import torch.nn.functional as F
from pathlib import Path
from omegaconf import OmegaConf
from torch.utils.data import Dataset
from transformers import CLIPTextModel, CLIPTokenizer

from ddiffusers import AutoencoderKL, DDIMScheduler
from einops import rearrange

from genphoto.pipelines.pipeline_animation import GenPhotoPipeline
from genphoto.models.unet import UNet3DConditionModelCameraCond
from genphoto.models.camera_adaptor import CameraCameraEncoder, CameraAdaptor
from genphoto.utils.util import save_videos_grid

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

def create_bokehK_embedding(bokehK_values, target_height, target_width):
    f = bokehK_values.shape[0]
    bokehK_embedding = torch.zeros((f, 3, target_height, target_width), dtype=bokehK_values.dtype)
    
    for i in range(f):
        K_value = bokehK_values[i].item()
        kernel_size = max(K_value, 1)
        sigma = K_value / 3.0

        ax = np.linspace(-(kernel_size / 2), kernel_size / 2, int(np.ceil(kernel_size)))
        xx, yy = np.meshgrid(ax, ax)
        kernel = np.exp(-(xx ** 2 + yy ** 2) / (2 * sigma ** 2))
        kernel /= np.sum(kernel)
        scale = kernel[int(np.ceil(kernel_size) / 2), int(np.ceil(kernel_size) / 2)]
        
        bokehK_embedding[i] = scale
    
    return bokehK_embedding

class Camera_Embedding(Dataset):
    def __init__(self, bokehK_values, tokenizer, text_encoder, device, sample_size=[256, 384]):
        self.bokehK_values = bokehK_values.to(device)
        self.tokenizer = tokenizer
        self.text_encoder = text_encoder
        self.device = device  
        self.sample_size = sample_size

    def load(self):
        if len(self.bokehK_values) != 5:
            raise ValueError("Expected 5 bokehK values")

        prompts = []
        for bb in self.bokehK_values:
            prompt = f"<bokeh kernel size: {bb.item()}>"
            prompts.append(prompt)
        
        with torch.no_grad():
            prompt_ids = self.tokenizer(
                prompts, max_length=self.tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
            ).input_ids.to(self.device)

            encoder_hidden_states = self.text_encoder(input_ids=prompt_ids).last_hidden_state

        differences = []
        for i in range(1, encoder_hidden_states.size(0)):
            diff = encoder_hidden_states[i] - encoder_hidden_states[i - 1]
            diff = diff.unsqueeze(0)
            differences.append(diff)  

        final_diff = encoder_hidden_states[-1] - encoder_hidden_states[0]
        final_diff = final_diff.unsqueeze(0)
        differences.append(final_diff)

        concatenated_differences = torch.cat(differences, dim=0)

        pad_length = 128 - concatenated_differences.size(1)
        if pad_length > 0:
            concatenated_differences_padded = F.pad(concatenated_differences, (0, 0, 0, pad_length))

        ccl_embedding = concatenated_differences_padded.reshape(
            concatenated_differences_padded.size(0), self.sample_size[0], self.sample_size[1]
        ).unsqueeze(1).expand(-1, 3, -1, -1).to(self.device)
        
        bokehK_embedding = create_bokehK_embedding(self.bokehK_values, self.sample_size[0], self.sample_size[1]).to(self.device)
        camera_embedding = torch.cat((bokehK_embedding, ccl_embedding), dim=1)
        return camera_embedding


def load_models(cfg):
    device = "cuda" if torch.cuda.is_available() else "cpu"

    noise_scheduler = DDIMScheduler(**OmegaConf.to_container(cfg.noise_scheduler_kwargs))
    vae = AutoencoderKL.from_pretrained(cfg.pretrained_model_path, subfolder="vae").to(device)
    vae.requires_grad_(False)
    tokenizer = CLIPTokenizer.from_pretrained(cfg.pretrained_model_path, subfolder="tokenizer")
    text_encoder = CLIPTextModel.from_pretrained(cfg.pretrained_model_path, subfolder="text_encoder").to(device)
    text_encoder.requires_grad_(False)
    unet = UNet3DConditionModelCameraCond.from_pretrained_2d(
        cfg.pretrained_model_path,
        subfolder=cfg.unet_subfolder,
        unet_additional_kwargs=cfg.unet_additional_kwargs
    ).to(device)
    unet.requires_grad_(False)

    camera_encoder = CameraCameraEncoder(**cfg.camera_encoder_kwargs).to(device)
    camera_encoder.requires_grad_(False)
    camera_adaptor = CameraAdaptor(unet, camera_encoder)
    camera_adaptor.requires_grad_(False)
    camera_adaptor.to(device)

    unet.set_all_attn_processor(
        add_spatial_lora=cfg.lora_ckpt is not None,
        add_motion_lora=cfg.motion_lora_rank > 0,
        lora_kwargs={"lora_rank": cfg.lora_rank, "lora_scale": cfg.lora_scale},
        motion_lora_kwargs={"lora_rank": cfg.motion_lora_rank, "lora_scale": cfg.motion_lora_scale},
        **cfg.attention_processor_kwargs
    )

    if cfg.lora_ckpt is not None:
        lora_checkpoints = torch.load(cfg.lora_ckpt, map_location=unet.device)
        if 'lora_state_dict' in lora_checkpoints.keys():
            lora_checkpoints = lora_checkpoints['lora_state_dict']
        _, lora_u = unet.load_state_dict(lora_checkpoints, strict=False)
        assert len(lora_u) == 0

    if cfg.motion_module_ckpt is not None:
        mm_checkpoints = torch.load(cfg.motion_module_ckpt, map_location=unet.device)
        _, mm_u = unet.load_state_dict(mm_checkpoints, strict=False)
        assert len(mm_u) == 0
    
    if cfg.camera_adaptor_ckpt is not None:
        camera_adaptor_checkpoint = torch.load(cfg.camera_adaptor_ckpt, map_location=device)
        camera_encoder_state_dict = camera_adaptor_checkpoint['camera_encoder_state_dict']
        attention_processor_state_dict = camera_adaptor_checkpoint['attention_processor_state_dict']
        camera_enc_m, camera_enc_u = camera_adaptor.camera_encoder.load_state_dict(camera_encoder_state_dict, strict=False)
        assert len(camera_enc_m) == 0 and len(camera_enc_u) == 0
        _, attention_processor_u = camera_adaptor.unet.load_state_dict(attention_processor_state_dict, strict=False)
        assert len(attention_processor_u) == 0
        
    pipeline = GenPhotoPipeline(
        vae=vae,
        text_encoder=text_encoder,
        tokenizer=tokenizer,
        unet=unet,
        scheduler=noise_scheduler,
        camera_encoder=camera_encoder
    ).to(device)
    pipeline.enable_vae_slicing()

    return pipeline, device



def run_inference(pipeline, tokenizer, text_encoder, base_scene, bokehK_list, device, video_length=5, height=256, width=384):


    bokehK_values = json.loads(bokehK_list)
    bokehK_values = torch.tensor(bokehK_values).unsqueeze(1)

    camera_embedding = Camera_Embedding(bokehK_values, tokenizer, text_encoder, device).load()
    camera_embedding = rearrange(camera_embedding.unsqueeze(0), "b f c h w -> b c f h w")

    with torch.no_grad():
        sample = pipeline(
            prompt=base_scene,
            camera_embedding=camera_embedding,
            video_length=video_length,
            height=height,
            width=width,
            num_inference_steps=25,
            guidance_scale=8.0
        ).videos[0].cpu()

    temporal_video_path = tempfile.NamedTemporaryFile(suffix='.mp4').name
    save_videos_grid(sample[None], temporal_video_path, rescale=False)


    return temporal_video_path


def main(config_path, base_scene, bokehK_list):
    torch.manual_seed(42)
    cfg = OmegaConf.load(config_path)
    logger.info("Loading models...")
    pipeline, device = load_models(cfg)
    logger.info("Starting inference...")

    video_path = run_inference(pipeline, pipeline.tokenizer, pipeline.text_encoder, base_scene, bokehK_list, device)
    logger.info(f"Video saved to {video_path}")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--config", type=str, required=True, help="Path to YAML configuration file")
    parser.add_argument("--base_scene", type=str, required=True, help="Scene description")
    parser.add_argument("--bokehK_list", type=str, required=True, help="Comma-separated Bokeh K values")
    args = parser.parse_args()
    main(args.config, args.base_scene, args.bokehK_list)


## example 
## python inference_bokehK.py --config configs/inference_genphoto/adv3_256_384_genphoto_relora_bokehK.yaml --base_scene "A young boy wearing an orange jacket is standing on a crosswalk, waiting to cross the street." --bokehK_list "[2.44, 8.3, 10.1, 17.2, 24.0]"