Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,632 Bytes
1ae4e5b 1201269 9659e37 1201269 1ae4e5b cc3773d 1ae4e5b cc3773d 1ae4e5b cc3773d 1ae4e5b cc3773d 1ae4e5b cc3773d 1ae4e5b cc3773d 1ae4e5b cc3773d 1ae4e5b cc3773d 1ae4e5b cc3773d 1ae4e5b cc3773d 1ae4e5b cc3773d 1ae4e5b cc3773d 1ae4e5b cc3773d 1ae4e5b cc3773d 1ae4e5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
import tempfile
import imageio
import os
import torch
import logging
import argparse
import json
import numpy as np
import torch.nn.functional as F
from pathlib import Path
from omegaconf import OmegaConf
from torch.utils.data import Dataset
from transformers import CLIPTextModel, CLIPTokenizer
from ddiffusers import AutoencoderKL, DDIMScheduler
from einops import rearrange
from genphoto.pipelines.pipeline_animation import GenPhotoPipeline
from genphoto.models.unet import UNet3DConditionModelCameraCond
from genphoto.models.camera_adaptor import CameraCameraEncoder, CameraAdaptor
from genphoto.utils.util import save_videos_grid
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def create_focal_length_embedding(focal_length_values, target_height, target_width, base_focal_length=24.0, sensor_height=24.0, sensor_width=36.0):
device = 'cpu'
focal_length_values = focal_length_values.to(device)
f = focal_length_values.shape[0] # Number of frames
# Convert constants to tensors to perform operations with focal_length_values
sensor_width = torch.tensor(sensor_width, device=device)
sensor_height = torch.tensor(sensor_height, device=device)
base_focal_length = torch.tensor(base_focal_length, device=device)
# Calculate the FOV for the base focal length (min_focal_length)
base_fov_x = 2.0 * torch.atan(sensor_width * 0.5 / base_focal_length)
base_fov_y = 2.0 * torch.atan(sensor_height * 0.5 / base_focal_length)
# Calculate the FOV for each focal length in focal_length_values
target_fov_x = 2.0 * torch.atan(sensor_width * 0.5 / focal_length_values)
target_fov_y = 2.0 * torch.atan(sensor_height * 0.5 / focal_length_values)
# Calculate crop ratio: how much of the image is cropped at the current focal length
crop_ratio_xs = target_fov_x / base_fov_x # Crop ratio for horizontal axis
crop_ratio_ys = target_fov_y / base_fov_y # Crop ratio for vertical axis
# Get the center of the image
center_h, center_w = target_height // 2, target_width // 2
# Initialize a mask tensor with zeros on CPU
focal_length_embedding = torch.zeros((f, 3, target_height, target_width), dtype=torch.float32) # Shape [f, 3, H, W]
# Fill the center region with 1 based on the calculated crop dimensions
for i in range(f):
# Crop dimensions calculated using rounded float values
crop_h = torch.round(crop_ratio_ys[i] * target_height).int().item() # Rounded cropped height for the current frame
# print('crop_h', crop_h)
crop_w = torch.round(crop_ratio_xs[i] * target_width).int().item() # Rounded cropped width for the current frame
# Ensure the cropped dimensions are within valid bounds
crop_h = max(1, min(target_height, crop_h))
crop_w = max(1, min(target_width, crop_w))
# Set the center region of the focal_length embedding to 1 for the current frame
focal_length_embedding[i, :,
center_h - crop_h // 2: center_h + crop_h // 2,
center_w - crop_w // 2: center_w + crop_w // 2] = 1.0
return focal_length_embedding
class Camera_Embedding(Dataset):
def __init__(self, focal_length_values, tokenizer, text_encoder, device, sample_size=[256, 384]):
self.focal_length_values = focal_length_values.to(device)
self.tokenizer = tokenizer
self.text_encoder = text_encoder
self.device = device
self.sample_size = sample_size
def load(self):
if len(self.focal_length_values) != 5:
raise ValueError("Expected 5 focal_length values")
# Generate prompts for each focal length value and append focal_length information to caption
prompts = []
for fl in self.focal_length_values:
prompt = f"<focal length: {fl.item()}>"
prompts.append(prompt)
# Tokenize prompts and encode to get embeddings
with torch.no_grad():
prompt_ids = self.tokenizer(
prompts, max_length=self.tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
).input_ids.to(self.device)
encoder_hidden_states = self.text_encoder(input_ids=prompt_ids).last_hidden_state # Shape: (f, sequence_length, hidden_size)
# Calculate differences between consecutive embeddings (ignoring sequence_length)
differences = []
for i in range(1, encoder_hidden_states.size(0)):
diff = encoder_hidden_states[i] - encoder_hidden_states[i - 1]
diff = diff.unsqueeze(0)
differences.append(diff)
# Add the difference between the last and the first embedding
final_diff = encoder_hidden_states[-1] - encoder_hidden_states[0]
final_diff = final_diff.unsqueeze(0)
differences.append(final_diff)
# Concatenate differences along the batch dimension (f-1)
concatenated_differences = torch.cat(differences, dim=0)
frame = concatenated_differences.size(0)
concatenated_differences = torch.cat(differences, dim=0)
pad_length = 128 - concatenated_differences.size(1)
if pad_length > 0:
# Pad along the second dimension (77 -> 128), pad only on the right side
concatenated_differences_padded = F.pad(concatenated_differences, (0, 0, 0, pad_length))
ccl_embedding = concatenated_differences_padded.reshape(frame, self.sample_size[0], self.sample_size[1])
ccl_embedding = ccl_embedding.unsqueeze(1)
ccl_embedding = ccl_embedding.expand(-1, 3, -1, -1)
ccl_embedding = ccl_embedding.to(self.device)
focal_length_embedding = create_focal_length_embedding(self.focal_length_values, self.sample_size[0], self.sample_size[1]).to(self.device)
camera_embedding = torch.cat((focal_length_embedding, ccl_embedding), dim=1)
return camera_embedding
def load_models(cfg):
device = "cuda" if torch.cuda.is_available() else "cpu"
noise_scheduler = DDIMScheduler(**OmegaConf.to_container(cfg.noise_scheduler_kwargs))
vae = AutoencoderKL.from_pretrained(cfg.pretrained_model_path, subfolder="vae").to(device)
vae.requires_grad_(False)
tokenizer = CLIPTokenizer.from_pretrained(cfg.pretrained_model_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(cfg.pretrained_model_path, subfolder="text_encoder").to(device)
text_encoder.requires_grad_(False)
unet = UNet3DConditionModelCameraCond.from_pretrained_2d(
cfg.pretrained_model_path,
subfolder=cfg.unet_subfolder,
unet_additional_kwargs=cfg.unet_additional_kwargs
).to(device)
unet.requires_grad_(False)
camera_encoder = CameraCameraEncoder(**cfg.camera_encoder_kwargs).to(device)
camera_encoder.requires_grad_(False)
camera_adaptor = CameraAdaptor(unet, camera_encoder)
camera_adaptor.requires_grad_(False)
camera_adaptor.to(device)
logger.info("Setting the attention processors")
unet.set_all_attn_processor(
add_spatial_lora=cfg.lora_ckpt is not None,
add_motion_lora=cfg.motion_lora_rank > 0,
lora_kwargs={"lora_rank": cfg.lora_rank, "lora_scale": cfg.lora_scale},
motion_lora_kwargs={"lora_rank": cfg.motion_lora_rank, "lora_scale": cfg.motion_lora_scale},
**cfg.attention_processor_kwargs
)
if cfg.lora_ckpt is not None:
print(f"Loading the lora checkpoint from {cfg.lora_ckpt}")
lora_checkpoints = torch.load(cfg.lora_ckpt, map_location=unet.device)
if 'lora_state_dict' in lora_checkpoints.keys():
lora_checkpoints = lora_checkpoints['lora_state_dict']
_, lora_u = unet.load_state_dict(lora_checkpoints, strict=False)
assert len(lora_u) == 0
print(f'Loading done')
if cfg.motion_module_ckpt is not None:
print(f"Loading the motion module checkpoint from {cfg.motion_module_ckpt}")
mm_checkpoints = torch.load(cfg.motion_module_ckpt, map_location=unet.device)
_, mm_u = unet.load_state_dict(mm_checkpoints, strict=False)
assert len(mm_u) == 0
print("Loading done")
if cfg.camera_adaptor_ckpt is not None:
logger.info(f"Loading camera adaptor from {cfg.camera_adaptor_ckpt}")
camera_adaptor_checkpoint = torch.load(cfg.camera_adaptor_ckpt, map_location=device)
camera_encoder_state_dict = camera_adaptor_checkpoint['camera_encoder_state_dict']
attention_processor_state_dict = camera_adaptor_checkpoint['attention_processor_state_dict']
camera_enc_m, camera_enc_u = camera_adaptor.camera_encoder.load_state_dict(camera_encoder_state_dict, strict=False)
assert len(camera_enc_m) == 0 and len(camera_enc_u) == 0
_, attention_processor_u = camera_adaptor.unet.load_state_dict(attention_processor_state_dict, strict=False)
assert len(attention_processor_u) == 0
logger.info("Camera Adaptor loading done")
else:
logger.info("No Camera Adaptor checkpoint used")
pipeline = GenPhotoPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=noise_scheduler,
camera_encoder=camera_encoder
).to(device)
pipeline.enable_vae_slicing()
return pipeline, device
def run_inference(pipeline, tokenizer, text_encoder, base_scene, focal_length_list, device, video_length=5, height=256, width=384):
focal_length_values = json.loads(focal_length_list)
focal_length_values = torch.tensor(focal_length_values).unsqueeze(1)
# Ensure camera_embedding is on the correct device
camera_embedding = Camera_Embedding(focal_length_values, tokenizer, text_encoder, device).load()
camera_embedding = rearrange(camera_embedding.unsqueeze(0), "b f c h w -> b c f h w")
with torch.no_grad():
sample = pipeline(
prompt=base_scene,
camera_embedding=camera_embedding,
video_length=video_length,
height=height,
width=width,
num_inference_steps=25,
guidance_scale=8.0
).videos[0].cpu()
temporal_video_path = tempfile.NamedTemporaryFile(suffix='.mp4').name
save_videos_grid(sample[None], temporal_video_path, rescale=False)
return temporal_video_path
def main(config_path, base_scene, focal_length_list):
torch.manual_seed(42)
cfg = OmegaConf.load(config_path)
logger.info("Loading models...")
pipeline, device = load_models(cfg)
logger.info("Starting inference...")
video_path = run_inference(pipeline, pipeline.tokenizer, pipeline.text_encoder, base_scene, focal_length_list, device)
logger.info(f"Video saved to {video_path}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, required=True, help="Path to YAML configuration file")
parser.add_argument("--base_scene", type=str, required=True, help="invariant scene caption as JSON string")
parser.add_argument("--focal_length_list", type=str, required=True, help="focal_length values as JSON string")
args = parser.parse_args()
main(args.config, args.base_scene, args.focal_length_list)
# usage example
# python inference_focal_length.py --config configs/inference_genphoto/adv3_256_384_genphoto_relora_focal_length.yaml --base_scene "A cozy living room with a large, comfy sofa and a coffee table." --focal_length_list "[25.0, 35.0, 45.0, 55.0, 65.0]"
|