File size: 11,632 Bytes
1ae4e5b
 
 
 
 
 
 
 
 
 
 
 
 
1201269
9659e37
1201269
 
1ae4e5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc3773d
1ae4e5b
 
cc3773d
1ae4e5b
cc3773d
 
1ae4e5b
 
cc3773d
1ae4e5b
 
 
 
 
 
 
 
 
 
 
cc3773d
1ae4e5b
 
 
 
 
 
 
 
 
cc3773d
 
1ae4e5b
 
 
 
cc3773d
1ae4e5b
 
cc3773d
 
1ae4e5b
 
cc3773d
 
1ae4e5b
cc3773d
 
1ae4e5b
 
 
cc3773d
1ae4e5b
 
 
cc3773d
 
 
 
1ae4e5b
 
 
 
 
 
 
 
 
 
cc3773d
1ae4e5b
 
cc3773d
1ae4e5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import tempfile
import imageio
import os
import torch
import logging
import argparse
import json
import numpy as np
import torch.nn.functional as F
from pathlib import Path
from omegaconf import OmegaConf
from torch.utils.data import Dataset
from transformers import CLIPTextModel, CLIPTokenizer

from ddiffusers import AutoencoderKL, DDIMScheduler


from einops import rearrange

from genphoto.pipelines.pipeline_animation import GenPhotoPipeline
from genphoto.models.unet import UNet3DConditionModelCameraCond
from genphoto.models.camera_adaptor import CameraCameraEncoder, CameraAdaptor
from genphoto.utils.util import save_videos_grid

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)




def create_focal_length_embedding(focal_length_values, target_height, target_width, base_focal_length=24.0, sensor_height=24.0, sensor_width=36.0):
    device = 'cpu'
    focal_length_values = focal_length_values.to(device)
    f = focal_length_values.shape[0]  # Number of frames


    # Convert constants to tensors to perform operations with focal_length_values
    sensor_width = torch.tensor(sensor_width, device=device)
    sensor_height = torch.tensor(sensor_height, device=device)
    base_focal_length = torch.tensor(base_focal_length, device=device)

    # Calculate the FOV for the base focal length (min_focal_length)
    base_fov_x = 2.0 * torch.atan(sensor_width * 0.5 / base_focal_length)
    base_fov_y = 2.0 * torch.atan(sensor_height * 0.5 / base_focal_length)

    # Calculate the FOV for each focal length in focal_length_values
    target_fov_x = 2.0 * torch.atan(sensor_width * 0.5 / focal_length_values)
    target_fov_y = 2.0 * torch.atan(sensor_height * 0.5 / focal_length_values)

    # Calculate crop ratio: how much of the image is cropped at the current focal length
    crop_ratio_xs = target_fov_x / base_fov_x  # Crop ratio for horizontal axis
    crop_ratio_ys = target_fov_y / base_fov_y  # Crop ratio for vertical axis

    # Get the center of the image
    center_h, center_w = target_height // 2, target_width // 2

    # Initialize a mask tensor with zeros on CPU
    focal_length_embedding = torch.zeros((f, 3, target_height, target_width), dtype=torch.float32)  # Shape [f, 3, H, W]

    # Fill the center region with 1 based on the calculated crop dimensions
    for i in range(f):
        # Crop dimensions calculated using rounded float values
        crop_h = torch.round(crop_ratio_ys[i] * target_height).int().item()  # Rounded cropped height for the current frame
       # print('crop_h', crop_h)
        crop_w = torch.round(crop_ratio_xs[i] * target_width).int().item()  # Rounded cropped width for the current frame

        # Ensure the cropped dimensions are within valid bounds
        crop_h = max(1, min(target_height, crop_h))
        crop_w = max(1, min(target_width, crop_w))

        # Set the center region of the focal_length embedding to 1 for the current frame
        focal_length_embedding[i, :,
        center_h - crop_h // 2: center_h + crop_h // 2,
        center_w - crop_w // 2: center_w + crop_w // 2] = 1.0

    return focal_length_embedding


class Camera_Embedding(Dataset):
    def __init__(self, focal_length_values, tokenizer, text_encoder, device, sample_size=[256, 384]):
        self.focal_length_values = focal_length_values.to(device)                                                 
        self.tokenizer = tokenizer                 
        self.text_encoder = text_encoder       
        self.device = device               
        self.sample_size = sample_size

    def load(self):

        if len(self.focal_length_values) != 5:
            raise ValueError("Expected 5 focal_length values")

        # Generate prompts for each focal length value and append focal_length information to caption
        prompts = []
        for fl in self.focal_length_values:
            prompt = f"<focal length: {fl.item()}>"
            prompts.append(prompt)
        

        # Tokenize prompts and encode to get embeddings
        with torch.no_grad():
            prompt_ids = self.tokenizer(
                prompts, max_length=self.tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
            ).input_ids.to(self.device)

            encoder_hidden_states = self.text_encoder(input_ids=prompt_ids).last_hidden_state  # Shape: (f, sequence_length, hidden_size)
        

        # Calculate differences between consecutive embeddings (ignoring sequence_length)
        differences = []
        for i in range(1, encoder_hidden_states.size(0)):
            diff = encoder_hidden_states[i] - encoder_hidden_states[i - 1]
            diff = diff.unsqueeze(0)
            differences.append(diff)  

        # Add the difference between the last and the first embedding
        final_diff = encoder_hidden_states[-1] - encoder_hidden_states[0]
        final_diff = final_diff.unsqueeze(0)
        differences.append(final_diff)

        # Concatenate differences along the batch dimension (f-1)
        concatenated_differences = torch.cat(differences, dim=0) 
        frame = concatenated_differences.size(0)
        concatenated_differences = torch.cat(differences, dim=0)

        pad_length = 128 - concatenated_differences.size(1)
        if pad_length > 0:
        # Pad along the second dimension (77 -> 128), pad only on the right side
            concatenated_differences_padded = F.pad(concatenated_differences, (0, 0, 0, pad_length))


        ccl_embedding = concatenated_differences_padded.reshape(frame, self.sample_size[0], self.sample_size[1])
        ccl_embedding = ccl_embedding.unsqueeze(1)  
        ccl_embedding = ccl_embedding.expand(-1, 3, -1, -1)
        ccl_embedding = ccl_embedding.to(self.device)
        focal_length_embedding = create_focal_length_embedding(self.focal_length_values, self.sample_size[0], self.sample_size[1]).to(self.device)

        camera_embedding = torch.cat((focal_length_embedding, ccl_embedding), dim=1)
        return camera_embedding


def load_models(cfg):

    device = "cuda" if torch.cuda.is_available() else "cpu"

    noise_scheduler = DDIMScheduler(**OmegaConf.to_container(cfg.noise_scheduler_kwargs))
    vae = AutoencoderKL.from_pretrained(cfg.pretrained_model_path, subfolder="vae").to(device)
    vae.requires_grad_(False)
    tokenizer = CLIPTokenizer.from_pretrained(cfg.pretrained_model_path, subfolder="tokenizer")
    text_encoder = CLIPTextModel.from_pretrained(cfg.pretrained_model_path, subfolder="text_encoder").to(device)
    text_encoder.requires_grad_(False)
    unet = UNet3DConditionModelCameraCond.from_pretrained_2d(
        cfg.pretrained_model_path,
        subfolder=cfg.unet_subfolder,
        unet_additional_kwargs=cfg.unet_additional_kwargs
    ).to(device)
    unet.requires_grad_(False)

    camera_encoder = CameraCameraEncoder(**cfg.camera_encoder_kwargs).to(device)
    camera_encoder.requires_grad_(False)
    camera_adaptor = CameraAdaptor(unet, camera_encoder)
    camera_adaptor.requires_grad_(False)
    camera_adaptor.to(device)

    logger.info("Setting the attention processors")
    unet.set_all_attn_processor(
        add_spatial_lora=cfg.lora_ckpt is not None,
        add_motion_lora=cfg.motion_lora_rank > 0,
        lora_kwargs={"lora_rank": cfg.lora_rank, "lora_scale": cfg.lora_scale},
        motion_lora_kwargs={"lora_rank": cfg.motion_lora_rank, "lora_scale": cfg.motion_lora_scale},
        **cfg.attention_processor_kwargs
    )

    if cfg.lora_ckpt is not None:
        print(f"Loading the lora checkpoint from {cfg.lora_ckpt}")
        lora_checkpoints = torch.load(cfg.lora_ckpt, map_location=unet.device)
        if 'lora_state_dict' in lora_checkpoints.keys():
            lora_checkpoints = lora_checkpoints['lora_state_dict']
        _, lora_u = unet.load_state_dict(lora_checkpoints, strict=False)
        assert len(lora_u) == 0
        print(f'Loading done')

    if cfg.motion_module_ckpt is not None:
        print(f"Loading the motion module checkpoint from {cfg.motion_module_ckpt}")
        mm_checkpoints = torch.load(cfg.motion_module_ckpt, map_location=unet.device)
        _, mm_u = unet.load_state_dict(mm_checkpoints, strict=False)
        assert len(mm_u) == 0
        print("Loading done")
    
    if cfg.camera_adaptor_ckpt is not None:
        logger.info(f"Loading camera adaptor from {cfg.camera_adaptor_ckpt}")
        camera_adaptor_checkpoint = torch.load(cfg.camera_adaptor_ckpt, map_location=device)
        camera_encoder_state_dict = camera_adaptor_checkpoint['camera_encoder_state_dict']
        attention_processor_state_dict = camera_adaptor_checkpoint['attention_processor_state_dict']
        camera_enc_m, camera_enc_u = camera_adaptor.camera_encoder.load_state_dict(camera_encoder_state_dict, strict=False)

        assert len(camera_enc_m) == 0 and len(camera_enc_u) == 0
        _, attention_processor_u = camera_adaptor.unet.load_state_dict(attention_processor_state_dict, strict=False)
        assert len(attention_processor_u) == 0
        
        logger.info("Camera Adaptor loading done")
    else:
        logger.info("No Camera Adaptor checkpoint used")

    pipeline = GenPhotoPipeline(
        vae=vae,
        text_encoder=text_encoder,
        tokenizer=tokenizer,
        unet=unet,
        scheduler=noise_scheduler,
        camera_encoder=camera_encoder
    ).to(device)
    pipeline.enable_vae_slicing()

    return pipeline, device


def run_inference(pipeline, tokenizer, text_encoder, base_scene, focal_length_list, device, video_length=5, height=256, width=384):

    focal_length_values = json.loads(focal_length_list)
    focal_length_values = torch.tensor(focal_length_values).unsqueeze(1)

    # Ensure camera_embedding is on the correct device
    camera_embedding = Camera_Embedding(focal_length_values, tokenizer, text_encoder, device).load()
    camera_embedding = rearrange(camera_embedding.unsqueeze(0), "b f c h w -> b c f h w")

    with torch.no_grad():
        sample = pipeline(
            prompt=base_scene,
            camera_embedding=camera_embedding,
            video_length=video_length,
            height=height,
            width=width,
            num_inference_steps=25,
            guidance_scale=8.0
        ).videos[0].cpu()

    temporal_video_path = tempfile.NamedTemporaryFile(suffix='.mp4').name
    save_videos_grid(sample[None], temporal_video_path, rescale=False)


    return temporal_video_path


def main(config_path, base_scene, focal_length_list):
    torch.manual_seed(42)
    cfg = OmegaConf.load(config_path)
    logger.info("Loading models...")
    pipeline, device = load_models(cfg)
    logger.info("Starting inference...")

    video_path = run_inference(pipeline, pipeline.tokenizer, pipeline.text_encoder, base_scene, focal_length_list, device)
    logger.info(f"Video saved to {video_path}")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--config", type=str, required=True, help="Path to YAML configuration file")
    parser.add_argument("--base_scene", type=str, required=True, help="invariant scene caption as JSON string")
    parser.add_argument("--focal_length_list", type=str, required=True, help="focal_length values as JSON string")
    args = parser.parse_args()
    main(args.config, args.base_scene, args.focal_length_list)

    # usage example
    # python inference_focal_length.py --config configs/inference_genphoto/adv3_256_384_genphoto_relora_focal_length.yaml --base_scene "A cozy living room with a large, comfy sofa and a coffee table." --focal_length_list "[25.0, 35.0, 45.0, 55.0, 65.0]"