Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,705 Bytes
2b386d4 18864a3 cc3773d 2b386d4 1ae4e5b 2b386d4 fe68716 5da9f4f fe68716 5da9f4f 2b386d4 cc3773d 1ae4e5b 18864a3 1ae4e5b 18864a3 1ae4e5b 18864a3 1ae4e5b 18864a3 1ae4e5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import spaces
import os
import gradio as gr
import json
import torch
from huggingface_hub import snapshot_download
from inference_bokehK import load_models as load_bokeh_models, run_inference as run_bokeh_inference, OmegaConf
from inference_focal_length import load_models as load_focal_models, run_inference as run_focal_inference
from inference_shutter_speed import load_models as load_shutter_models, run_inference as run_shutter_inference
from inference_color_temperature import load_models as load_color_models, run_inference as run_color_inference
model_path = "ckpts"
os.makedirs(model_path, exist_ok=True)
print("Downloading models from Hugging Face...")
snapshot_download(repo_id="pandaphd/generative_photography", local_dir=model_path)
torch.manual_seed(42)
bokeh_cfg = OmegaConf.load("configs/inference_genphoto/adv3_256_384_genphoto_relora_bokehK.yaml")
bokeh_pipeline, bokeh_device = load_bokeh_models(bokeh_cfg)
focal_cfg = OmegaConf.load("configs/inference_genphoto/adv3_256_384_genphoto_relora_focal_length.yaml")
focal_pipeline, focal_device = load_focal_models(focal_cfg)
shutter_cfg = OmegaConf.load("configs/inference_genphoto/adv3_256_384_genphoto_relora_shutter_speed.yaml")
shutter_pipeline, shutter_device = load_shutter_models(shutter_cfg)
color_cfg = OmegaConf.load("configs/inference_genphoto/adv3_256_384_genphoto_relora_color_temperature.yaml")
color_pipeline, color_device = load_color_models(color_cfg)
@spaces.GPU(duration=30)
def generate_bokeh_video(base_scene, bokehK_list):
try:
torch.manual_seed(42)
if len(json.loads(bokehK_list)) != 5:
raise ValueError("Exactly 5 Bokeh K values required")
return run_bokeh_inference(
pipeline=bokeh_pipeline, tokenizer=bokeh_pipeline.tokenizer,
text_encoder=bokeh_pipeline.text_encoder, base_scene=base_scene,
bokehK_list=bokehK_list, device=bokeh_device
)
except Exception as e:
return f"Error: {str(e)}"
@spaces.GPU(duration=30)
def generate_focal_video(base_scene, focal_length_list):
try:
torch.manual_seed(42)
if len(json.loads(focal_length_list)) != 5:
raise ValueError("Exactly 5 focal length values required")
return run_focal_inference(
pipeline=focal_pipeline, tokenizer=focal_pipeline.tokenizer,
text_encoder=focal_pipeline.text_encoder, base_scene=base_scene,
focal_length_list=focal_length_list, device=focal_device
)
except Exception as e:
return f"Error: {str(e)}"
@spaces.GPU(duration=30)
def generate_shutter_video(base_scene, shutter_speed_list):
try:
torch.manual_seed(42)
if len(json.loads(shutter_speed_list)) != 5:
raise ValueError("Exactly 5 shutter speed values required")
return run_shutter_inference(
pipeline=shutter_pipeline, tokenizer=shutter_pipeline.tokenizer,
text_encoder=shutter_pipeline.text_encoder, base_scene=base_scene,
shutter_speed_list=shutter_speed_list, device=shutter_device
)
except Exception as e:
return f"Error: {str(e)}"
@spaces.GPU(duration=30)
def generate_color_video(base_scene, color_temperature_list):
try:
torch.manual_seed(42)
if len(json.loads(color_temperature_list)) != 5:
raise ValueError("Exactly 5 color temperature values required")
return run_color_inference(
pipeline=color_pipeline, tokenizer=color_pipeline.tokenizer,
text_encoder=color_pipeline.text_encoder, base_scene=base_scene,
color_temperature_list=color_temperature_list, device=color_device
)
except Exception as e:
return f"Error: {str(e)}"
bokeh_examples = [
["A variety of potted plants are displayed on a window sill, with some of them placed in yellow and white cups. The plants are arranged in different sizes and shapes, creating a visually appealing display.", "[18.0, 14.0, 10.0, 6.0, 2.0]"],
["A colorful backpack with a floral pattern is sitting on a table next to a computer monitor.", "[2.3, 5.8, 10.2, 14.8, 24.9]"]
]
focal_examples = [
["A small office cubicle with a desk.", "[25.1, 36.1, 47.1, 58.1, 69.1]"],
["A large white couch in a living room.", "[55.0, 46.0, 37.0, 28.0, 25.0]"]
]
shutter_examples = [
["A brown and orange leather handbag.", "[0.11, 0.22, 0.33, 0.44, 0.55]"],
["A variety of potted plants.", "[0.2, 0.49, 0.69, 0.75, 0.89]"]
]
color_examples = [
["A blue sky with mountains.", "[5455.0, 5155.0, 5555.0, 6555.0, 7555.0]"],
["A red couch in front of a window.", "[3500.0, 5500.0, 6500.0, 7500.0, 8500.0]"]
]
with gr.Blocks(title="Generative Photography") as demo:
gr.Markdown("# **Generative Photography: Scene-Consistent Camera Control for Realistic Text-to-Image Synthesis** ")
with gr.Tabs():
with gr.Tab("BokehK Effect"):
gr.Markdown("### Generate Frames with Bokeh Blur Effect")
with gr.Row():
with gr.Column():
scene_input_bokeh = gr.Textbox(label="Scene Description", placeholder="Describe the scene you want to generate...")
bokeh_input = gr.Textbox(label="Bokeh Blur Values", placeholder="Enter 5 comma-separated values from 1-30, e.g., [2.44, 8.3, 10.1, 17.2, 24.0]")
submit_bokeh = gr.Button("Generate Video")
with gr.Column():
video_output_bokeh = gr.Video(label="Generated Video")
gr.Examples(bokeh_examples, [scene_input_bokeh, bokeh_input], [video_output_bokeh], generate_bokeh_video)
submit_bokeh.click(generate_bokeh_video, [scene_input_bokeh, bokeh_input], [video_output_bokeh])
with gr.Tab("Focal Length Effect"):
gr.Markdown("### Generate Frames with Focal Length Effect")
with gr.Row():
with gr.Column():
scene_input_focal = gr.Textbox(label="Scene Description", placeholder="Describe the scene you want to generate...")
focal_input = gr.Textbox(label="Focal Length Values", placeholder="Enter 5 comma-separated values from 24-70, e.g., [25.1, 30.2, 33.3, 40.8, 54.0]")
submit_focal = gr.Button("Generate Video")
with gr.Column():
video_output_focal = gr.Video(label="Generated Video")
gr.Examples(focal_examples, [scene_input_focal, focal_input], [video_output_focal], generate_focal_video)
submit_focal.click(generate_focal_video, [scene_input_focal, focal_input], [video_output_focal])
with gr.Tab("Shutter Speed Effect"):
gr.Markdown("### Generate Frames with Shutter Speed Effect")
with gr.Row():
with gr.Column():
scene_input_shutter = gr.Textbox(label="Scene Description", placeholder="Describe the scene you want to generate...")
shutter_input = gr.Textbox(label="Shutter Speed Values", placeholder="Enter 5 comma-separated values from 0.1-1.0, e.g., [0.15, 0.32, 0.53, 0.62, 0.82]")
submit_shutter = gr.Button("Generate Video")
with gr.Column():
video_output_shutter = gr.Video(label="Generated Video")
gr.Examples(shutter_examples, [scene_input_shutter, shutter_input], [video_output_shutter], generate_shutter_video)
submit_shutter.click(generate_shutter_video, [scene_input_shutter, shutter_input], [video_output_shutter])
with gr.Tab("Color Temperature Effect"):
gr.Markdown("### Generate Frames with Color Temperature Effect")
with gr.Row():
with gr.Column():
scene_input_color = gr.Textbox(label="Scene Description", placeholder="Describe the scene you want to generate...")
color_input = gr.Textbox(label="Color Temperature Values", placeholder="Enter 5 comma-separated values from 2000-10000, e.g., [3001.3, 4000.2, 4400.34, 5488.23, 8888.82]")
submit_color = gr.Button("Generate Video")
with gr.Column():
video_output_color = gr.Video(label="Generated Video")
gr.Examples(color_examples, [scene_input_color, color_input], [video_output_color], generate_color_video)
submit_color.click(generate_color_video, [scene_input_color, color_input], [video_output_color])
if __name__ == "__main__":
demo.launch(share=True)
|