File size: 8,438 Bytes
fe68716
 
 
 
2b386d4
 
 
 
fe68716
 
 
 
 
2b386d4
 
 
 
 
 
fe68716
 
2b386d4
fe68716
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import spaces
import os
import json
import torch
import requests
import subprocess
import gradio as gr
from omegaconf import OmegaConf


model_path = "ckpts"
os.makedirs(model_path, exist_ok=True)

# Download files from Hugging Face repository using wget
def download_huggingface_files():
    # URL to the Hugging Face repository
    repo_url = "https://huggingface.co/pandaphd/generative_photography/tree/main/"
    # Using wget to download all the files from the given Hugging Face repository
    subprocess.run(["wget", "-r", "-np", "-nH", "--cut-dirs=3", "-P", model_path, repo_url])

print("Downloading models from Hugging Face...")
download_huggingface_files()


torch.manual_seed(42)

bokeh_cfg = OmegaConf.load("configs/inference_genphoto/adv3_256_384_genphoto_relora_bokehK.yaml")
bokeh_pipeline, bokeh_device = load_bokeh_models(bokeh_cfg)

focal_cfg = OmegaConf.load("configs/inference_genphoto/adv3_256_384_genphoto_relora_focal_length.yaml")
focal_pipeline, focal_device = load_focal_models(focal_cfg)

shutter_cfg = OmegaConf.load("configs/inference_genphoto/adv3_256_384_genphoto_relora_shutter_speed.yaml")
shutter_pipeline, shutter_device = load_shutter_models(shutter_cfg)

color_cfg = OmegaConf.load("configs/inference_genphoto/adv3_256_384_genphoto_relora_color_temperature.yaml")
color_pipeline, color_device = load_color_models(color_cfg)

@spaces.GPU(duration=30)
def generate_bokeh_video(base_scene, bokehK_list):
    try:
        torch.manual_seed(42) 
        if len(json.loads(bokehK_list)) != 5:
            raise ValueError("Exactly 5 Bokeh K values required")
        return run_bokeh_inference(
            pipeline=bokeh_pipeline, tokenizer=bokeh_pipeline.tokenizer,
            text_encoder=bokeh_pipeline.text_encoder, base_scene=base_scene,
            bokehK_list=bokehK_list, device=bokeh_device
        )
    except Exception as e:
        return f"Error: {str(e)}"

@spaces.GPU(duration=30)
def generate_focal_video(base_scene, focal_length_list):
    try:
        torch.manual_seed(42)
        if len(json.loads(focal_length_list)) != 5:
            raise ValueError("Exactly 5 focal length values required")
        return run_focal_inference(
            pipeline=focal_pipeline, tokenizer=focal_pipeline.tokenizer,
            text_encoder=focal_pipeline.text_encoder, base_scene=base_scene,
            focal_length_list=focal_length_list, device=focal_device
        )
    except Exception as e:
        return f"Error: {str(e)}"

@spaces.GPU(duration=30)
def generate_shutter_video(base_scene, shutter_speed_list):
    try:
        torch.manual_seed(42)
        if len(json.loads(shutter_speed_list)) != 5:
            raise ValueError("Exactly 5 shutter speed values required")
        return run_shutter_inference(
            pipeline=shutter_pipeline, tokenizer=shutter_pipeline.tokenizer,
            text_encoder=shutter_pipeline.text_encoder, base_scene=base_scene,
            shutter_speed_list=shutter_speed_list, device=shutter_device
        )
    except Exception as e:
        return f"Error: {str(e)}"


@spaces.GPU(duration=30)
def generate_color_video(base_scene, color_temperature_list):
    try:
        torch.manual_seed(42)
        if len(json.loads(color_temperature_list)) != 5:
            raise ValueError("Exactly 5 color temperature values required")
        return run_color_inference(
            pipeline=color_pipeline, tokenizer=color_pipeline.tokenizer,
            text_encoder=color_pipeline.text_encoder, base_scene=base_scene,
            color_temperature_list=color_temperature_list, device=color_device
        )
    except Exception as e:
        return f"Error: {str(e)}"



bokeh_examples = [
    ["A variety of potted plants are displayed on a window sill, with some of them placed in yellow and white cups. The plants are arranged in different sizes and shapes, creating a visually appealing display.", "[18.0, 14.0, 10.0, 6.0, 2.0]"],
    ["A colorful backpack with a floral pattern is sitting on a table next to a computer monitor.", "[2.3, 5.8, 10.2, 14.8, 24.9]"]
]

focal_examples = [
    ["A small office cubicle with a desk.", "[25.1, 36.1, 47.1, 58.1, 69.1]"],
    ["A large white couch in a living room.", "[55.0, 46.0, 37.0, 28.0, 25.0]"]
]

shutter_examples = [
    ["A brown and orange leather handbag.", "[0.11, 0.22, 0.33, 0.44, 0.55]"],
    ["A variety of potted plants.", "[0.2, 0.49, 0.69, 0.75, 0.89]"]
]

color_examples = [
    ["A blue sky with mountains.", "[5455.0, 5155.0, 5555.0, 6555.0, 7555.0]"],
    ["A red couch in front of a window.", "[3500.0, 5500.0, 6500.0, 7500.0, 8500.0]"]
]


with gr.Blocks(title="Generative Photography") as demo:
    gr.Markdown("# **Generative Photography: Scene-Consistent Camera Control for Realistic Text-to-Image Synthesis** ")

    with gr.Tabs():
        with gr.Tab("BokehK Effect"):
            gr.Markdown("### Generate Frames with Bokeh Blur Effect")
            with gr.Row():
                with gr.Column():
                    scene_input_bokeh = gr.Textbox(label="Scene Description", placeholder="Describe the scene you want to generate...")
                    bokeh_input = gr.Textbox(label="Bokeh Blur Values", placeholder="Enter 5 comma-separated values from 1-30, e.g., [2.44, 8.3, 10.1, 17.2, 24.0]")
                    submit_bokeh = gr.Button("Generate Video")
                with gr.Column():
                    video_output_bokeh = gr.Video(label="Generated Video")
            gr.Examples(bokeh_examples, [scene_input_bokeh, bokeh_input], [video_output_bokeh], generate_bokeh_video)
            submit_bokeh.click(generate_bokeh_video, [scene_input_bokeh, bokeh_input], [video_output_bokeh])

        with gr.Tab("Focal Length Effect"):
            gr.Markdown("### Generate Frames with Focal Length Effect")
            with gr.Row():
                with gr.Column():
                    scene_input_focal = gr.Textbox(label="Scene Description", placeholder="Describe the scene you want to generate...")
                    focal_input = gr.Textbox(label="Focal Length Values", placeholder="Enter 5 comma-separated values from 24-70, e.g., [25.1, 30.2, 33.3, 40.8, 54.0]")
                    submit_focal = gr.Button("Generate Video")
                with gr.Column():
                    video_output_focal = gr.Video(label="Generated Video")
            gr.Examples(focal_examples, [scene_input_focal, focal_input], [video_output_focal], generate_focal_video)
            submit_focal.click(generate_focal_video, [scene_input_focal, focal_input], [video_output_focal])

        with gr.Tab("Shutter Speed Effect"):
            gr.Markdown("### Generate Frames with Shutter Speed Effect")
            with gr.Row():
                with gr.Column():
                    scene_input_shutter = gr.Textbox(label="Scene Description", placeholder="Describe the scene you want to generate...")
                    shutter_input = gr.Textbox(label="Shutter Speed Values", placeholder="Enter 5 comma-separated values from 0.1-1.0, e.g., [0.15, 0.32, 0.53, 0.62, 0.82]")
                    submit_shutter = gr.Button("Generate Video")
                with gr.Column():
                    video_output_shutter = gr.Video(label="Generated Video")
            gr.Examples(shutter_examples, [scene_input_shutter, shutter_input], [video_output_shutter], generate_shutter_video)
            submit_shutter.click(generate_shutter_video, [scene_input_shutter, shutter_input], [video_output_shutter])

        with gr.Tab("Color Temperature Effect"):
            gr.Markdown("### Generate Frames with Color Temperature Effect")
            with gr.Row():
                with gr.Column():
                    scene_input_color = gr.Textbox(label="Scene Description", placeholder="Describe the scene you want to generate...")
                    color_input = gr.Textbox(label="Color Temperature Values", placeholder="Enter 5 comma-separated values from 2000-10000, e.g., [3001.3, 4000.2, 4400.34, 5488.23, 8888.82]")
                    submit_color = gr.Button("Generate Video")
                with gr.Column():
                    video_output_color = gr.Video(label="Generated Video")
            gr.Examples(color_examples, [scene_input_color, color_input], [video_output_color], generate_color_video)
            submit_color.click(generate_color_video, [scene_input_color, color_input], [video_output_color])

if __name__ == "__main__":
    demo.launch(share=True)