padmanabhbosamia commited on
Commit
c022e33
ยท
verified ยท
1 Parent(s): afabb3b

Delete README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -108
README.md DELETED
@@ -1,108 +0,0 @@
1
- # Stable Diffusion Style Transfer with Color Distance Loss
2
-
3
- This project implements a Stable Diffusion-based image generation system with custom style transfers and color enhancement through a distance loss function.
4
-
5
- ## ๐ŸŽจ Features
6
-
7
- ### Style Transfer
8
- - Implements 5 different artistic styles:
9
- - Ronaldo Style (Sports scenes)
10
- - Canna Lily (Nature and flowers)
11
- - Three Stooges (Comedy scenes)
12
- - Pop Art (Vibrant artistic style)
13
- - Bird Style (Wildlife imagery)
14
-
15
- ### Color Distance Loss
16
- The project implements a unique color enhancement through RGB channel separation:
17
- - Calculates distances between RGB channels
18
- - Enhances color vibrancy and contrast
19
- - Creates more distinct color separation
20
- - Reduces color mixing and muddiness
21
-
22
- ### Interactive Interface
23
- - User-friendly Gradio web interface
24
- - Side-by-side comparison of original and enhanced images
25
- - Real-time style selection
26
- - Example prompts for each style
27
-
28
- ## ๐Ÿš€ Setup and Installation
29
-
30
- 1. Install dependencies:
31
- bash
32
- pip install -r requirements.txt
33
-
34
- 2. Required files:
35
- - Style embeddings (.bin files):
36
- - ronaldo.bin
37
- - canna-lily-flowers102.bin
38
- - threestooges.bin
39
- - pop_art.bin
40
- - bird_style.bin
41
-
42
- 3. Run the application:
43
- bash
44
- python app.py
45
-
46
- ## ๐ŸŽฎ Usage
47
-
48
- 1. Enter a text prompt describing your desired image
49
- 2. Select a style using the radio buttons
50
- 3. Click "Generate Images" to create:
51
- - Left: Original styled image
52
- - Right: Image with color distance loss applied
53
-
54
- ## ๐Ÿ”ง Technical Details
55
-
56
- ### Distance Loss Function
57
- def Distance_loss(images):
58
- # Extract RGB channels
59
- red = images[:,0:1]
60
- green = images[:,1:2]
61
- blue = images[:,2:3]
62
- # Calculate channel distances
63
- rg_distance = ((red - green) 2).mean()
64
- rb_distance = ((red - blue) 2).mean()
65
- gb_distance = ((green - blue) 2).mean()
66
- return (rg_distance + rb_distance + gb_distance) 100
67
-
68
- This loss function:
69
- - Separates RGB channels
70
- - Calculates squared distances between channels
71
- - Enhances color distinctiveness
72
- - Applies during the generation process
73
-
74
- ## ๐Ÿ“ Example Prompts
75
-
76
- - Sports: "a soccer player celebrating a goal"
77
- - Nature: "beautiful flowers in a garden"
78
- - Comedy: "three comedians performing a skit"
79
- - Art: "a colorful portrait in pop art style"
80
- - Wildlife: "birds flying in a natural landscape"
81
-
82
- ## ๐Ÿ› ๏ธ Requirements
83
-
84
- - Python 3.8+
85
- - PyTorch
86
- - Diffusers
87
- - Transformers
88
- - Gradio
89
- - CUDA-capable GPU recommended
90
-
91
- ## ๐Ÿ“Š Results
92
-
93
- The color distance loss typically produces:
94
- - More vibrant colors
95
- - Better color separation
96
- - Enhanced contrast
97
- - More distinctive style characteristics
98
-
99
- ## ๐Ÿค Contributing
100
-
101
- Feel free to:
102
- - Submit issues
103
- - Fork the repository
104
- - Submit pull requests
105
-
106
- ## ๐Ÿ“œ License
107
-
108
- This project is open-source and available under the MIT License.