Stable_Styles / app.py
padmanabhbosamia's picture
Modified with Examples
8e1a13f verified
import torch
from diffusers import StableDiffusionPipeline
from torch import autocast
import gradio as gr
from huggingface_hub import hf_hub_download
import os
from pathlib import Path
import traceback
import glob
from PIL import Image
# Reuse the same load_learned_embed_in_clip and Distance_loss functions
def load_learned_embed_in_clip(learned_embeds_path, text_encoder, tokenizer, token=None):
loaded_learned_embeds = torch.load(learned_embeds_path, map_location="cpu")
trained_token = list(loaded_learned_embeds.keys())[0]
embeds = loaded_learned_embeds[trained_token]
# Get the expected dimension from the text encoder
expected_dim = text_encoder.get_input_embeddings().weight.shape[1]
current_dim = embeds.shape[0]
# Resize embeddings if dimensions don't match
if current_dim != expected_dim:
print(f"Resizing embedding from {current_dim} to {expected_dim}")
# Option 1: Truncate or pad with zeros
if current_dim > expected_dim:
embeds = embeds[:expected_dim]
else:
embeds = torch.cat([embeds, torch.zeros(expected_dim - current_dim)], dim=0)
# Reshape to match expected dimensions
embeds = embeds.unsqueeze(0) # Add batch dimension
# Cast to dtype of text_encoder
dtype = text_encoder.get_input_embeddings().weight.dtype
embeds = embeds.to(dtype)
# Add the token in tokenizer
token = token if token is not None else trained_token
num_added_tokens = tokenizer.add_tokens(token)
# Resize the token embeddings
text_encoder.resize_token_embeddings(len(tokenizer))
# Get the id for the token and assign the embeds
token_id = tokenizer.convert_tokens_to_ids(token)
text_encoder.get_input_embeddings().weight.data[token_id] = embeds[0]
return token
def Distance_loss(images):
# Ensure we're working with gradients
if not images.requires_grad:
images = images.detach().requires_grad_(True)
# Convert to float32 and normalize
images = images.float() / 2 + 0.5
# Get RGB channels
red = images[:,0:1]
green = images[:,1:2]
blue = images[:,2:3]
# Calculate color distances using L2 norm
rg_distance = ((red - green) ** 2).mean()
rb_distance = ((red - blue) ** 2).mean()
gb_distance = ((green - blue) ** 2).mean()
return (rg_distance + rb_distance + gb_distance) * 100 # Scale up the loss
class StyleGenerator:
_instance = None
@classmethod
def get_instance(cls):
if cls._instance is None:
cls._instance = cls()
return cls._instance
def __init__(self):
self.pipe = None
self.style_tokens = []
self.styles = [
"ronaldo",
"canna-lily-flowers102",
"threestooges",
"pop_art",
"bird_style"
]
self.style_names = [
"Ronaldo",
"Canna Lily",
"Three Stooges",
"Pop Art",
"Bird Style"
]
self.is_initialized = False
self.device = "cuda" if torch.cuda.is_available() else "cpu"
if self.device == "cpu":
print("NVIDIA GPU not found. Running on CPU (this will be slower)")
def initialize_model(self):
if self.is_initialized:
return
try:
print("Initializing Stable Diffusion model...")
model_id = "runwayml/stable-diffusion-v1-5"
self.pipe = StableDiffusionPipeline.from_pretrained(
model_id,
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
safety_checker=None
)
self.pipe = self.pipe.to(self.device)
# Load style embeddings from current directory
current_dir = Path(__file__).parent
for style, style_name in zip(self.styles, self.style_names):
style_path = current_dir / f"{style}.bin"
if not style_path.exists():
raise FileNotFoundError(f"Style embedding not found: {style_path}")
print(f"Loading style: {style_name}")
token = load_learned_embed_in_clip(str(style_path), self.pipe.text_encoder, self.pipe.tokenizer)
self.style_tokens.append(token)
print(f"βœ“ Loaded style: {style_name}")
self.is_initialized = True
print(f"Model initialization complete! Using device: {self.device}")
except Exception as e:
print(f"Error during initialization: {str(e)}")
print(traceback.format_exc())
raise
def generate_single_style(self, prompt, selected_style):
try:
# Find the index of the selected style
style_idx = self.style_names.index(self.style_names[selected_style])
# Generate single image with selected style
styled_prompt = f"{prompt}, {self.style_tokens[style_idx]}"
# Set seed for reproducibility
generator_seed = 42
torch.manual_seed(generator_seed)
if self.device == "cuda":
torch.cuda.manual_seed(generator_seed)
# Generate base image
with autocast(self.device):
base_image = self.pipe(
styled_prompt,
num_inference_steps=50,
guidance_scale=7.5,
generator=torch.Generator(self.device).manual_seed(generator_seed)
).images[0]
# Generate same image with loss
with autocast(self.device):
loss_image = self.pipe(
styled_prompt,
num_inference_steps=50,
guidance_scale=7.5,
callback=self.callback_fn,
callback_steps=5,
generator=torch.Generator(self.device).manual_seed(generator_seed)
).images[0]
return base_image, loss_image
except Exception as e:
print(f"Error in generate_single_style: {e}")
raise
def callback_fn(self, i, t, latents):
if i % 5 == 0: # Apply loss every 5 steps
try:
# Create a copy that requires gradients
latents_copy = latents.detach().clone()
latents_copy.requires_grad_(True)
# Compute loss
loss = Distance_loss(latents_copy)
# Compute gradients
if loss.requires_grad:
grads = torch.autograd.grad(
outputs=loss,
inputs=latents_copy,
allow_unused=True,
retain_graph=False
)[0]
if grads is not None:
# Apply gradients to original latents
return latents - 0.1 * grads.detach()
except Exception as e:
print(f"Error in callback: {e}")
return latents
def generate_single_style(prompt, selected_style):
try:
generator = StyleGenerator.get_instance()
if not generator.is_initialized:
generator.initialize_model()
base_image, loss_image = generator.generate_single_style(prompt, selected_style)
return [
gr.update(visible=False), # error_message
base_image, # original_image
loss_image # loss_image
]
except Exception as e:
print(f"Error in generate_single_style: {e}")
return [
gr.update(value=f"Error: {str(e)}", visible=True), # error_message
None, # original_image
None # loss_image
]
# Add at the start of your script
def debug_image_paths():
output_dir = Path("Outputs")
enhanced_dir = output_dir / "Color_Enhanced"
print(f"\nChecking image paths:")
print(f"Current working directory: {Path.cwd()}")
print(f"Looking for images in: {enhanced_dir.absolute()}")
if enhanced_dir.exists():
print("\nFound files:")
for file in enhanced_dir.glob("*.webp"):
print(f"- {file.name}")
else:
print("\nDirectory not found!")
# Call this function before creating the interface
debug_image_paths()
# Create a more beautiful interface with custom styling
with gr.Blocks(css="""
.gradio-container {
background-color: #1f2937 !important;
}
.dark-theme {
background-color: #111827;
border-radius: 10px;
padding: 20px;
margin: 10px;
border: 1px solid #374151;
color: #f3f4f6;
}
/* Enhanced Tab Styling */
.tabs.svelte-710i53 {
margin-bottom: 0 !important;
}
.tab-nav.svelte-710i53 {
background: transparent !important;
border: none !important;
padding: 12px 24px !important;
margin: 0 2px !important;
color: #9CA3AF !important;
font-weight: 500 !important;
transition: all 0.2s ease !important;
border-bottom: 2px solid transparent !important;
}
.tab-nav.svelte-710i53.selected {
background: transparent !important;
color: #F3F4F6 !important;
border-bottom: 2px solid #6366F1 !important;
}
.tab-nav.svelte-710i53:hover {
color: #F3F4F6 !important;
border-bottom: 2px solid #4F46E5 !important;
}
""") as iface:
# Header section
gr.Markdown(
"""
<div class="dark-theme" style="text-align: center;">
# 🎨 AI Style Transfer Studio
### Transform your ideas into artistic masterpieces
</div>
"""
)
# Controls section
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("## 🎯 Controls")
prompt = gr.Textbox(
label="What would you like to create?",
placeholder="e.g., a soccer player celebrating a goal",
lines=3
)
style_radio = gr.Radio(
choices=[
"Ronaldo Style",
"Canna Lily",
"Three Stooges",
"Pop Art",
"Bird Style"
],
label="Choose Your Style",
value="Ronaldo Style",
type="index"
)
generate_btn = gr.Button(
"πŸš€ Generate Artwork",
variant="primary",
size="lg"
)
error_message = gr.Markdown(visible=False)
style_description = gr.Markdown()
# Generated Images
with gr.Row():
with gr.Column():
original_image = gr.Image(
label="Original Style",
show_label=True,
height=300
)
with gr.Column():
loss_image = gr.Image(
label="Color Enhanced",
show_label=True,
height=300
)
# Example Gallery
gr.Markdown(
"""
<div class="dark-theme">
## πŸŽ† Example Gallery
Compare original and enhanced versions for each style:
</div>
"""
)
# Example Images
with gr.Row():
try:
output_dir = Path("Outputs")
original_dir = output_dir
enhanced_dir = output_dir / "Color_Enhanced"
if enhanced_dir.exists():
original_images = {
Path(f).stem.split('_example')[0]: f
for f in original_dir.glob("*.webp")
if '_example' in f.name
}
enhanced_images = {
Path(f).stem.split('_example')[0]: f
for f in enhanced_dir.glob("*.webp")
if '_example' in f.name
}
styles = [
("ronaldo", "Ronaldo Style"),
("canna_lily", "Canna Lily"),
("three_stooges", "Three Stooges"),
("pop_art", "Pop Art"),
("bird_style", "Bird Style")
]
# Create a grid of all styles
for style_key, style_name in styles:
if style_key in original_images and style_key in enhanced_images:
with gr.Row():
gr.Markdown(f"### {style_name}")
with gr.Row():
with gr.Column(scale=1):
gr.Image(
value=str(original_images[style_key]),
label="Original",
show_label=True,
height=180
)
with gr.Column(scale=1):
gr.Image(
value=str(enhanced_images[style_key]),
label="Color Enhanced",
show_label=True,
height=180
)
# Add a small spacing between styles
gr.Markdown("<div style='margin: 10px 0;'></div>")
except Exception as e:
print(f"Error in example gallery: {e}")
gr.Markdown(f"Error loading example gallery: {str(e)}")
# Info section
with gr.Row():
with gr.Column():
gr.Markdown(
"""
<div class="dark-theme">
## 🎨 Style Guide
| Style | Best For |
|-------|----------|
| **Ronaldo Style** | Dynamic sports scenes, action shots, celebrations |
| **Canna Lily** | Natural scenes, floral compositions, garden imagery |
| **Three Stooges** | Comedy, humor, expressive character portraits |
| **Pop Art** | Vibrant artwork, bold colors, stylized designs |
| **Bird Style** | Wildlife, nature scenes, peaceful landscapes |
*Choose the style that best matches your creative vision*
</div>
"""
)
with gr.Column():
gr.Markdown(
"""
<div class="dark-theme">
## πŸ” Color Enhancement Technology
Our advanced color processing uses distance loss to enhance your images:
### 🌈 Color Dynamics
- **Vibrancy**: Intensifies colors naturally
- **Contrast**: Improves depth and definition
- **Balance**: Optimizes color relationships
### 🎨 Technical Features
- **Channel Separation**: RGB optimization
- **Loss Function**: Mathematical color enhancement
- **Real-time Processing**: Dynamic adjustments
### ✨ Benefits
- Richer, more vivid colors
- Clearer color boundaries
- Reduced color muddiness
- Enhanced artistic impact
<small>*Our color distance loss technology mathematically optimizes RGB channel relationships*</small>
</div>
"""
)
# Update style description on change
def update_style_description(style_idx):
descriptions = [
"Perfect for capturing dynamic sports moments and celebrations",
"Ideal for creating beautiful natural and floral compositions",
"Great for adding humor and expressiveness to your scenes",
"Transform your ideas into vibrant pop art masterpieces",
"Specialized in capturing the beauty of nature and wildlife"
]
styles = ["Ronaldo Style", "Canna Lily", "Three Stooges", "Pop Art", "Bird Style"]
return f"### Selected Style: {styles[style_idx]}\n{descriptions[style_idx]}"
style_radio.change(
fn=update_style_description,
inputs=style_radio,
outputs=style_description
)
generate_btn.click(
fn=generate_single_style,
inputs=[prompt, style_radio],
outputs=[error_message, original_image, loss_image]
)
# Launch the app
if __name__ == "__main__":
iface.launch(
share=True,
show_error=True
)