Spaces:
Runtime error
Runtime error
File size: 4,099 Bytes
fdf7fb5 1ec839c b70fd06 178c600 fdf7fb5 252c838 fdf7fb5 dd797b5 fdf7fb5 dd797b5 fdf7fb5 a0b7f02 fdf7fb5 1ec839c ac1928f 5150155 8e925f2 5150155 15bb642 ac1928f 1ec839c fdf7fb5 dd797b5 429cb16 fdf7fb5 dd797b5 fdf7fb5 dd797b5 fdf7fb5 dd797b5 fdf7fb5 a0b7f02 fdf7fb5 dd797b5 1ec839c fdf7fb5 ee09d2c fdf7fb5 dd797b5 a0b7f02 dd797b5 fdf7fb5 dd797b5 1ec839c fdf7fb5 1ec839c fdf7fb5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
import gradio as gr
from pathlib import Path
import os
os.system('pip install transformers')
os.system('pip install --upgrade pip')
os.system('pip install tensorflow')
from transformers import pipeline
docs = None
def request_pathname(files):
if files is None:
return [[]]
return [[file.name, file.name.split('/')[-1]] for file in files]
def validate_dataset(dataset):
global docs
docs = None # clear it out if dataset is modified
docs_ready = dataset.iloc[-1, 0] != ""
if docs_ready:
return "✨Listo✨"
else:
return "⚠️Esperando documentos..."
def do_ask(question, button, dataset):
global docs
docs_ready = dataset.iloc[-1, 0] != ""
if button == "✨Listo✨" and docs_ready:
for _, row in dataset.iterrows():
path = row['filepath']
text = Path(f'{path}').read_text()
question_answerer = pipeline("question-answering", model='distilbert-base-cased-distilled-squad')
QA_input = {
'question': question,
'context': text
}
return question_answerer(QA_input)['answer']
else:
return ""
# def do_ask(question, button, dataset, progress=gr.Progress()):
# global docs
# docs_ready = dataset.iloc[-1, 0] != ""
# if button == "✨Listo✨" and docs_ready:
# if docs is None: # don't want to rebuild index if it's already built
# import paperqa
# docs = paperqa.Docs()
# # dataset is pandas dataframe
# for _, row in dataset.iterrows():
# key = None
# if ',' not in row['citation string']:
# key = row['citation string']
# docs.add(row['filepath'], row['citation string'], key=key)
# else:
# return ""
# progress(0, "Construyendo índices...")
# docs._build_faiss_index()
# progress(0.25, "Encolando...")
# result = docs.query(question)
# progress(1.0, "¡Hecho!")
# return result.formatted_answer, result.context
with gr.Blocks() as demo:
gr.Markdown("""
# Document Question and Answer adaptado al castellano por Pablo Ascorbe.
Este espacio ha sido clonado y adaptado de: https://huggingface.co/spaces/whitead/paper-qa
La idea es utilizar un modelo preentrenado de HuggingFace como "distilbert-base-cased-distilled-squad"
y responder las preguntas en inglés, para ello, será necesario hacer primero una traducción de los textos en castellano
a inglés y luego volver a traducir en sentido contrario.
## Instrucciones:
Adjunte su documento, ya sea en formato .txt o .pdf, y pregunte lo que desee.
""")
uploaded_files = gr.File(
label="Sus documentos subidos (PDF o txt)", file_count="multiple", )
dataset = gr.Dataframe(
headers=["filepath", "citation string"],
datatype=["str", "str"],
col_count=(2, "fixed"),
interactive=True,
label="Documentos y citas"
)
buildb = gr.Textbox("⚠️Esperando documentos...",
label="Estado", interactive=False, show_label=True)
dataset.change(validate_dataset, inputs=[
dataset], outputs=[buildb])
uploaded_files.change(request_pathname, inputs=[
uploaded_files], outputs=[dataset])
query = gr.Textbox(
placeholder="Introduzca su pregunta aquí...", label="Pregunta")
ask = gr.Button("Preguntar")
gr.Markdown("## Respuesta")
answer = gr.Markdown(label="Respuesta")
with gr.Accordion("Contexto", open=False):
gr.Markdown(
"### Contexto\n\nEl siguiente contexto ha sido utilizado para generar la respuesta:")
context = gr.Markdown(label="Contexto")
# ask.click(fn=do_ask, inputs=[query, buildb,
# dataset], outputs=[answer, context])
ask.click(fn=do_ask, inputs=[query, buildb,
dataset], outputs=[answer])
demo.queue(concurrency_count=20)
demo.launch(show_error=True)
|