Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import time
|
| 3 |
import spaces
|
|
@@ -24,10 +39,6 @@ DEVICE = (
|
|
| 24 |
BAD_WORD_KEYWORDS = ["(medium)"]
|
| 25 |
|
| 26 |
|
| 27 |
-
def fix_compiled_state_dict(state_dict: dict):
|
| 28 |
-
return {k.replace("._orig_mod.", "."): v for k, v in state_dict.items()}
|
| 29 |
-
|
| 30 |
-
|
| 31 |
def get_bad_words_ids(tokenizer: PreTrainedTokenizerFast):
|
| 32 |
ids = [
|
| 33 |
[id]
|
|
@@ -38,17 +49,12 @@ def get_bad_words_ids(tokenizer: PreTrainedTokenizerFast):
|
|
| 38 |
|
| 39 |
|
| 40 |
def prepare_models():
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
config, torch_dtype=torch.bfloat16, trust_remote_code=True
|
| 44 |
)
|
| 45 |
model.decoder_model.use_cache = True
|
| 46 |
processor = AutoProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
| 47 |
|
| 48 |
-
state_dict = load_file(MODEL_PATH)
|
| 49 |
-
state_dict = {k.replace("._orig_mod.", "."): v for k, v in state_dict.items()}
|
| 50 |
-
model.load_state_dict(state_dict)
|
| 51 |
-
|
| 52 |
model.eval()
|
| 53 |
model = model.to(DEVICE)
|
| 54 |
# model = torch.compile(model)
|
|
@@ -60,11 +66,17 @@ def demo():
|
|
| 60 |
model, processor = prepare_models()
|
| 61 |
ban_ids = get_bad_words_ids(processor.decoder_tokenizer)
|
| 62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
@spaces.GPU(duration=5)
|
| 64 |
@torch.inference_mode()
|
| 65 |
def generate_tags(
|
| 66 |
text: str,
|
| 67 |
auto_detect: bool,
|
|
|
|
| 68 |
copyright_tags: str = "",
|
| 69 |
length: str = "short",
|
| 70 |
max_new_tokens: int = 128,
|
|
@@ -77,7 +89,7 @@ def demo():
|
|
| 77 |
"<|bos|>"
|
| 78 |
f"<|aspect_ratio:tall|><|rating:general|><|length:{length}|>"
|
| 79 |
"<|reserved_2|><|reserved_3|><|reserved_4|>"
|
| 80 |
-
"<|translate:
|
| 81 |
"<copyright>" + copyright_tags.strip()
|
| 82 |
)
|
| 83 |
if not auto_detect:
|
|
@@ -146,6 +158,11 @@ def demo():
|
|
| 146 |
],
|
| 147 |
value="short",
|
| 148 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
translate_btn = gr.Button(value="Translate", variant="primary")
|
| 150 |
|
| 151 |
with gr.Accordion(label="Advanced", open=False):
|
|
@@ -174,7 +191,8 @@ def demo():
|
|
| 174 |
)
|
| 175 |
|
| 176 |
with gr.Column():
|
| 177 |
-
|
|
|
|
| 178 |
time_elapsed = gr.Markdown(value="")
|
| 179 |
|
| 180 |
gr.Examples(
|
|
@@ -239,6 +257,7 @@ def demo():
|
|
| 239 |
inputs=[
|
| 240 |
text,
|
| 241 |
auto_detect,
|
|
|
|
| 242 |
copyright_tags,
|
| 243 |
length,
|
| 244 |
max_new_tokens,
|
|
@@ -247,7 +266,7 @@ def demo():
|
|
| 247 |
top_k,
|
| 248 |
top_p,
|
| 249 |
],
|
| 250 |
-
outputs=[
|
| 251 |
)
|
| 252 |
|
| 253 |
ui.launch()
|
|
|
|
| 1 |
+
try:
|
| 2 |
+
import flash_attn
|
| 3 |
+
except:
|
| 4 |
+
import subprocess
|
| 5 |
+
|
| 6 |
+
print("Installing flash-attn...")
|
| 7 |
+
subprocess.run(
|
| 8 |
+
"pip install flash-attn --no-build-isolation",
|
| 9 |
+
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
| 10 |
+
shell=True,
|
| 11 |
+
)
|
| 12 |
+
import flash_attn
|
| 13 |
+
|
| 14 |
+
print("flash-attn installed.")
|
| 15 |
+
|
| 16 |
import os
|
| 17 |
import time
|
| 18 |
import spaces
|
|
|
|
| 39 |
BAD_WORD_KEYWORDS = ["(medium)"]
|
| 40 |
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
def get_bad_words_ids(tokenizer: PreTrainedTokenizerFast):
|
| 43 |
ids = [
|
| 44 |
[id]
|
|
|
|
| 49 |
|
| 50 |
|
| 51 |
def prepare_models():
|
| 52 |
+
model = AutoModelForPreTraining.from_pretrained(
|
| 53 |
+
MODEL_NAME, torch_dtype=torch.bfloat16, trust_remote_code=True
|
|
|
|
| 54 |
)
|
| 55 |
model.decoder_model.use_cache = True
|
| 56 |
processor = AutoProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
| 57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
model.eval()
|
| 59 |
model = model.to(DEVICE)
|
| 60 |
# model = torch.compile(model)
|
|
|
|
| 66 |
model, processor = prepare_models()
|
| 67 |
ban_ids = get_bad_words_ids(processor.decoder_tokenizer)
|
| 68 |
|
| 69 |
+
translation_mode_map = {
|
| 70 |
+
"translate": "exact",
|
| 71 |
+
"translate+extend": "approx",
|
| 72 |
+
}
|
| 73 |
+
|
| 74 |
@spaces.GPU(duration=5)
|
| 75 |
@torch.inference_mode()
|
| 76 |
def generate_tags(
|
| 77 |
text: str,
|
| 78 |
auto_detect: bool,
|
| 79 |
+
mode: str,
|
| 80 |
copyright_tags: str = "",
|
| 81 |
length: str = "short",
|
| 82 |
max_new_tokens: int = 128,
|
|
|
|
| 89 |
"<|bos|>"
|
| 90 |
f"<|aspect_ratio:tall|><|rating:general|><|length:{length}|>"
|
| 91 |
"<|reserved_2|><|reserved_3|><|reserved_4|>"
|
| 92 |
+
f"<|translate:{translation_mode_map[mode]}|><|input_end|>"
|
| 93 |
"<copyright>" + copyright_tags.strip()
|
| 94 |
)
|
| 95 |
if not auto_detect:
|
|
|
|
| 158 |
],
|
| 159 |
value="short",
|
| 160 |
)
|
| 161 |
+
translation_mode = gr.Radio(
|
| 162 |
+
label="Translation mode",
|
| 163 |
+
choices=list(translation_mode_map.keys()),
|
| 164 |
+
value=list(translation_mode_map.keys())[0],
|
| 165 |
+
)
|
| 166 |
translate_btn = gr.Button(value="Translate", variant="primary")
|
| 167 |
|
| 168 |
with gr.Accordion(label="Advanced", open=False):
|
|
|
|
| 191 |
)
|
| 192 |
|
| 193 |
with gr.Column():
|
| 194 |
+
output_translation = gr.Textbox(label="Output (translation)", lines=4, interactive=False)
|
| 195 |
+
output_extension = gr.Textbox(label="Output (extension)", lines=4, interactive=False)
|
| 196 |
time_elapsed = gr.Markdown(value="")
|
| 197 |
|
| 198 |
gr.Examples(
|
|
|
|
| 257 |
inputs=[
|
| 258 |
text,
|
| 259 |
auto_detect,
|
| 260 |
+
translation_mode,
|
| 261 |
copyright_tags,
|
| 262 |
length,
|
| 263 |
max_new_tokens,
|
|
|
|
| 266 |
top_k,
|
| 267 |
top_p,
|
| 268 |
],
|
| 269 |
+
outputs=[output_translation, output_extension, time_elapsed],
|
| 270 |
)
|
| 271 |
|
| 272 |
ui.launch()
|