File size: 7,668 Bytes
af35bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import gradio as gr
import pandas as pd
import yaml
import json
import os
from lm_eval import tasks, evaluator
from datetime import datetime
from huggingface_hub import HfApi
import plotly.express as px

class LeaderboardSpace:
    def __init__(self, space_name="ozayezerceli/PoCLeaderboard"):
        self.space_name = space_name
        self.results_dir = "benchmark_results"
        self.leaderboard_file = os.path.join(self.results_dir, "leaderboard.json")
        os.makedirs(self.results_dir, exist_ok=True)
        self.load_leaderboard()
        self.api = HfApi()

    def load_leaderboard(self):
        if os.path.exists(self.leaderboard_file):
            with open(self.leaderboard_file, 'r') as f:
                self.leaderboard = json.load(f)
        else:
            self.leaderboard = {"models": [], "results": {}}

    def save_leaderboard(self):
        with open(self.leaderboard_file, 'w') as f:
            json.dump(self.leaderboard, f, indent=2)
        
        # Push updated leaderboard to Space
        self.api.upload_file(
            path_or_fileobj=self.leaderboard_file,
            path_in_repo=self.leaderboard_file,
            repo_id=self.space_name,
            repo_type="space"
        )

    def get_leaderboard_df(self):
        if not self.leaderboard["models"]:
            return pd.DataFrame()
        
        data = []
        for model in self.leaderboard["models"]:
            result = self.leaderboard["results"][model]
            row = {"Model": model, "Timestamp": result["timestamp"]}
            
            for task, scores in result["scores"].items():
                for metric, value in scores.items():
                    row[f"{task}_{metric}"] = round(value * 100, 2)
            
            data.append(row)
            
        return pd.DataFrame(data)

    def create_leaderboard_plot(self):
        df = self.get_leaderboard_df()
        if df.empty:
            return None
        
        # Melt the DataFrame to create a format suitable for plotting
        metrics_cols = [col for col in df.columns if col not in ["Model", "Timestamp"]]
        df_melted = df.melt(
            id_vars=["Model"],
            value_vars=metrics_cols,
            var_name="Metric",
            value_name="Score"
        )
        
        # Create a grouped bar plot
        fig = px.bar(
            df_melted,
            x="Model",
            y="Score",
            color="Metric",
            title="Model Performance Across Tasks",
            barmode="group"
        )
        
        fig.update_layout(
            yaxis_title="Score (%)",
            xaxis_title="Model",
            legend_title="Metric"
        )
        
        return fig

def create_interface():
    space = LeaderboardSpace()
    
    with gr.Blocks() as demo:
        gr.Markdown("# 🏆 Model Evaluation Leaderboard")
        
        with gr.Tab("Leaderboard"):
            with gr.Row():
                leaderboard_plot = gr.Plot()
            
            with gr.Row():
                leaderboard_table = gr.DataFrame()
        
        with gr.Tab("Submit Evaluation"):
            with gr.Row():
                with gr.Column():
                    model_name = gr.Textbox(label="Model Name")
                    model_id = gr.Textbox(label="Hugging Face Model ID")
                    
                    # Task selection
                    available_tasks = tasks.LIST_OF_PUBLIC_TASKS
                    task_selection = gr.Checkboxgroup(
                        choices=available_tasks,
                        label="Select Tasks"
                    )
                    
                    submit_btn = gr.Button("Submit Evaluation")
            
            with gr.Row():
                evaluation_status = gr.Textbox(
                    label="Evaluation Status",
                    interactive=False
                )
        
        with gr.Tab("Custom Tasks"):
            with gr.Row():
                with gr.Column():
                    task_name = gr.Textbox(label="Task Name")
                    task_description = gr.Textbox(
                        label="Task Description",
                        lines=3
                    )
                    example_file = gr.File(
                        label="Upload Examples (JSON)",
                        file_types=[".json"]
                    )
                    submit_task_btn = gr.Button("Submit Custom Task")
            
            with gr.Row():
                task_status = gr.Textbox(
                    label="Task Status",
                    interactive=False
                )
        
        # Define update functions
        def update_leaderboard():
            df = space.get_leaderboard_df()
            plot = space.create_leaderboard_plot()
            return df, plot
        
        def submit_evaluation(model_name, model_id, selected_tasks):
            try:
                # Initialize evaluation
                results = evaluator.simple_evaluate(
                    model=model_id,
                    tasks=selected_tasks,
                    num_fewshot=0,
                    batch_size=1
                )
                
                # Update leaderboard
                if model_name not in space.leaderboard["models"]:
                    space.leaderboard["models"].append(model_name)
                
                space.leaderboard["results"][model_name] = {
                    "timestamp": datetime.now().isoformat(),
                    "model_id": model_id,
                    "scores": results
                }
                
                space.save_leaderboard()
                
                return "Evaluation completed successfully!", *update_leaderboard()
            except Exception as e:
                return f"Error during evaluation: {str(e)}", None, None
        
        def submit_custom_task(task_name, description, file):
            try:
                # Load and validate task data
                task_data = json.load(open(file.name))
                
                # Save task configuration
                task_config = {
                    "name": task_name,
                    "description": description,
                    "data": task_data
                }
                
                task_file = os.path.join(space.results_dir, f"task_{task_name}.json")
                with open(task_file, 'w') as f:
                    json.dump(task_config, f, indent=2)
                
                # Upload to Space
                space.api.upload_file(
                    path_or_fileobj=task_file,
                    path_in_repo=task_file,
                    repo_id=space.space_name,
                    repo_type="space"
                )
                
                return "Custom task added successfully!"
            except Exception as e:
                return f"Error adding custom task: {str(e)}"
        
        # Connect components
        submit_btn.click(
            submit_evaluation,
            inputs=[model_name, model_id, task_selection],
            outputs=[evaluation_status, leaderboard_table, leaderboard_plot]
        )
        
        submit_task_btn.click(
            submit_custom_task,
            inputs=[task_name, task_description, example_file],
            outputs=[task_status]
        )
        
        # Initial loading of leaderboard
        demo.load(
            update_leaderboard,
            outputs=[leaderboard_table, leaderboard_plot]
        )
    
    return demo

# Launch the interface
if __name__ == "__main__":
    demo = create_interface()
    demo.launch()