Spaces:
Sleeping
Sleeping
Commit
·
666f810
1
Parent(s):
a5f2574
tried using app.py similar to https://huggingface.co/spaces/openai/whisper/blob/main/app.py
Browse files
app.py
CHANGED
@@ -1,48 +1,26 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
import torch
|
4 |
|
5 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
6 |
|
7 |
-
|
8 |
-
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-medium")
|
9 |
|
10 |
-
model.config.forced_decoder_ids = None
|
11 |
|
12 |
-
def
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
waveform = waveform[:16000*30]
|
26 |
-
|
27 |
-
# make PyTorch tensor
|
28 |
-
waveform = torch.tensor(waveform)
|
29 |
-
return waveform
|
30 |
-
|
31 |
-
def predict(audio, mic_audio=None):
|
32 |
-
# audio = tuple (sample_rate, frames) or (sample_rate, (frames, channels))
|
33 |
-
if mic_audio is not None:
|
34 |
-
sampling_rate, waveform = mic_audio
|
35 |
-
elif audio is not None:
|
36 |
-
sampling_rate, waveform = audio
|
37 |
-
else:
|
38 |
-
return "(please provide audio)"
|
39 |
-
|
40 |
-
waveform = process_audio(sampling_rate, waveform)
|
41 |
-
input_features = processor(waveform, sampling_rate=16000, return_tensors="pt").input_features
|
42 |
-
predicted_ids = model.generate(input_features, max_length=400)
|
43 |
-
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
44 |
-
print(transcription)
|
45 |
-
return transcription[0]
|
46 |
|
47 |
|
48 |
title = "Demo for Whisper -> Something -> XLS-R"
|
@@ -53,7 +31,7 @@ being passed into the model. The output is the text transcription of the audio.
|
|
53 |
"""
|
54 |
|
55 |
gr.Interface(
|
56 |
-
fn=
|
57 |
inputs=[
|
58 |
gr.Audio(label="Upload Speech", source="upload", type="numpy"),
|
59 |
gr.Audio(label="Record Speech", source="microphone", type="numpy"),
|
|
|
1 |
+
import os
|
2 |
+
os.system("pip install git+https://github.com/openai/whisper.git")
|
3 |
import gradio as gr
|
4 |
+
import whisper
|
|
|
5 |
|
6 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
7 |
|
8 |
+
model = whisper.load_model("small")
|
|
|
9 |
|
|
|
10 |
|
11 |
+
def inference(audio):
|
12 |
+
audio = whisper.load_audio(audio)
|
13 |
+
audio = whisper.pad_or_trim(audio)
|
14 |
+
|
15 |
+
mel = whisper.log_mel_spectrogram(audio).to(model.device)
|
16 |
+
|
17 |
+
_, probs = model.detect_language(mel)
|
18 |
+
|
19 |
+
options = whisper.DecodingOptions(fp16 = False)
|
20 |
+
result = whisper.decode(model, mel, options)
|
21 |
+
|
22 |
+
print(result.text)
|
23 |
+
return result.text, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
|
26 |
title = "Demo for Whisper -> Something -> XLS-R"
|
|
|
31 |
"""
|
32 |
|
33 |
gr.Interface(
|
34 |
+
fn=inference,
|
35 |
inputs=[
|
36 |
gr.Audio(label="Upload Speech", source="upload", type="numpy"),
|
37 |
gr.Audio(label="Record Speech", source="microphone", type="numpy"),
|