Create demo.py
Browse files
demo.py
ADDED
|
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import random
|
| 4 |
+
# import spaces
|
| 5 |
+
import torch
|
| 6 |
+
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
|
| 7 |
+
# from para_attn.first_block_cache.diffusers_adapters import apply_cache_on_pipe
|
| 8 |
+
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
|
| 9 |
+
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
| 10 |
+
import multiprocessing as mp
|
| 11 |
+
|
| 12 |
+
import os
|
| 13 |
+
import requests
|
| 14 |
+
import tempfile
|
| 15 |
+
import shutil
|
| 16 |
+
from urllib.parse import urlparse
|
| 17 |
+
|
| 18 |
+
dtype = torch.bfloat16
|
| 19 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 20 |
+
#black-forest-labs/FLUX.1-Krea-dev
|
| 21 |
+
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
| 22 |
+
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
|
| 23 |
+
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
|
| 24 |
+
# srpo_128_base_oficial_model_fp16.safetensors
|
| 25 |
+
# pipe.load_lora_weights('Alissonerdx/flux.1-dev-SRPO-LoRas', weight_name='srpo_16_base_oficial_model_fp16.safetensors')
|
| 26 |
+
# pipe.fuse_lora()
|
| 27 |
+
torch.cuda.empty_cache()
|
| 28 |
+
|
| 29 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 30 |
+
MAX_IMAGE_SIZE = 2048
|
| 31 |
+
|
| 32 |
+
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
| 33 |
+
|
| 34 |
+
def load_lora_auto(pipe, lora_input):
|
| 35 |
+
lora_input = lora_input.strip()
|
| 36 |
+
if not lora_input:
|
| 37 |
+
return
|
| 38 |
+
|
| 39 |
+
# If it's just an ID like "author/model"
|
| 40 |
+
if "/" in lora_input and not lora_input.startswith("http"):
|
| 41 |
+
pipe.load_lora_weights(lora_input)
|
| 42 |
+
return
|
| 43 |
+
|
| 44 |
+
if lora_input.startswith("http"):
|
| 45 |
+
url = lora_input
|
| 46 |
+
|
| 47 |
+
# Repo page (no blob/resolve)
|
| 48 |
+
if "huggingface.co" in url and "/blob/" not in url and "/resolve/" not in url:
|
| 49 |
+
repo_id = urlparse(url).path.strip("/")
|
| 50 |
+
pipe.load_lora_weights(repo_id)
|
| 51 |
+
return
|
| 52 |
+
|
| 53 |
+
# Blob link → convert to resolve link
|
| 54 |
+
if "/blob/" in url:
|
| 55 |
+
url = url.replace("/blob/", "/resolve/")
|
| 56 |
+
|
| 57 |
+
# Download direct file
|
| 58 |
+
tmp_dir = tempfile.mkdtemp()
|
| 59 |
+
local_path = os.path.join(tmp_dir, os.path.basename(urlparse(url).path))
|
| 60 |
+
|
| 61 |
+
try:
|
| 62 |
+
print(f"Downloading LoRA from {url}...")
|
| 63 |
+
resp = requests.get(url, stream=True)
|
| 64 |
+
resp.raise_for_status()
|
| 65 |
+
with open(local_path, "wb") as f:
|
| 66 |
+
for chunk in resp.iter_content(chunk_size=8192):
|
| 67 |
+
f.write(chunk)
|
| 68 |
+
print(f"Saved LoRA to {local_path}")
|
| 69 |
+
pipe.load_lora_weights(local_path)
|
| 70 |
+
finally:
|
| 71 |
+
shutil.rmtree(tmp_dir, ignore_errors=True)
|
| 72 |
+
|
| 73 |
+
# @spaces.GPU(duration=25)
|
| 74 |
+
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, lora_id=None, lora_scale=0.95, progress=gr.Progress(track_tqdm=True)):
|
| 75 |
+
if randomize_seed:
|
| 76 |
+
seed = random.randint(0, MAX_SEED)
|
| 77 |
+
generator = torch.Generator().manual_seed(seed)
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
# for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
| 81 |
+
# prompt=prompt,
|
| 82 |
+
# guidance_scale=guidance_scale,
|
| 83 |
+
# num_inference_steps=num_inference_steps,
|
| 84 |
+
# width=width,
|
| 85 |
+
# height=height,
|
| 86 |
+
# generator=generator,
|
| 87 |
+
# output_type="pil",
|
| 88 |
+
# good_vae=good_vae,
|
| 89 |
+
# ):
|
| 90 |
+
# yield img, seed
|
| 91 |
+
|
| 92 |
+
# Handle LoRA loading
|
| 93 |
+
# Load LoRA weights and prepare joint_attention_kwargs
|
| 94 |
+
if lora_id and lora_id.strip() != "":
|
| 95 |
+
pipe.unload_lora_weights()
|
| 96 |
+
# pipe.load_lora_weights(lora_id.strip())
|
| 97 |
+
load_lora_auto(pipe, lora_id.strip())
|
| 98 |
+
joint_attention_kwargs = {"scale": lora_scale}
|
| 99 |
+
else:
|
| 100 |
+
joint_attention_kwargs = None
|
| 101 |
+
|
| 102 |
+
# apply_cache_on_pipe(
|
| 103 |
+
# pipe,
|
| 104 |
+
# # residual_diff_threshold=0.2,
|
| 105 |
+
# )
|
| 106 |
+
|
| 107 |
+
try:
|
| 108 |
+
# Call the custom pipeline function with the correct keyword argument
|
| 109 |
+
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
| 110 |
+
prompt=prompt,
|
| 111 |
+
guidance_scale=guidance_scale,
|
| 112 |
+
num_inference_steps=num_inference_steps,
|
| 113 |
+
width=width,
|
| 114 |
+
height=height,
|
| 115 |
+
generator=generator,
|
| 116 |
+
output_type="pil",
|
| 117 |
+
good_vae=good_vae, # Assuming good_vae is defined elsewhere
|
| 118 |
+
joint_attention_kwargs=joint_attention_kwargs, # Fixed parameter name
|
| 119 |
+
):
|
| 120 |
+
yield img, seed
|
| 121 |
+
finally:
|
| 122 |
+
# Unload LoRA weights if they were loaded
|
| 123 |
+
if lora_id:
|
| 124 |
+
pipe.unload_lora_weights()
|
| 125 |
+
|
| 126 |
+
examples = [
|
| 127 |
+
"a tiny astronaut hatching from an egg on the moon",
|
| 128 |
+
"a cat holding a sign that says hello world",
|
| 129 |
+
"an anime illustration of a wiener schnitzel",
|
| 130 |
+
]
|
| 131 |
+
|
| 132 |
+
css = """
|
| 133 |
+
#col-container {
|
| 134 |
+
margin: 0 auto;
|
| 135 |
+
max-width: 960px;
|
| 136 |
+
}
|
| 137 |
+
.generate-btn {
|
| 138 |
+
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important;
|
| 139 |
+
border: none !important;
|
| 140 |
+
color: white !important;
|
| 141 |
+
}
|
| 142 |
+
.generate-btn:hover {
|
| 143 |
+
transform: translateY(-2px);
|
| 144 |
+
box-shadow: 0 5px 15px rgba(0,0,0,0.2);
|
| 145 |
+
}
|
| 146 |
+
"""
|
| 147 |
+
|
| 148 |
+
with gr.Blocks(css=css) as app:
|
| 149 |
+
gr.HTML("<center><h1>FLUX.1-Dev with LoRA support</h1></center>")
|
| 150 |
+
with gr.Column(elem_id="col-container"):
|
| 151 |
+
with gr.Row():
|
| 152 |
+
with gr.Column():
|
| 153 |
+
with gr.Row():
|
| 154 |
+
text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=3, elem_id="prompt-text-input")
|
| 155 |
+
with gr.Row():
|
| 156 |
+
custom_lora = gr.Textbox(label="Custom LoRA (optional)", info="LoRA Hugging Face path", placeholder="multimodalart/vintage-ads-flux")
|
| 157 |
+
with gr.Row():
|
| 158 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 159 |
+
lora_scale = gr.Slider(
|
| 160 |
+
label="LoRA Scale",
|
| 161 |
+
minimum=0,
|
| 162 |
+
maximum=2,
|
| 163 |
+
step=0.01,
|
| 164 |
+
value=0.95,
|
| 165 |
+
)
|
| 166 |
+
with gr.Row():
|
| 167 |
+
width = gr.Slider(label="Width", value=1024, minimum=64, maximum=2048, step=8)
|
| 168 |
+
height = gr.Slider(label="Height", value=1024, minimum=64, maximum=2048, step=8)
|
| 169 |
+
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=4294967296, step=1)
|
| 170 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 171 |
+
with gr.Row():
|
| 172 |
+
steps = gr.Slider(label="Inference steps steps", value=28, minimum=1, maximum=100, step=1)
|
| 173 |
+
cfg = gr.Slider(label="Guidance Scale", value=3.5, minimum=1, maximum=20, step=0.5)
|
| 174 |
+
# method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
|
| 175 |
+
|
| 176 |
+
with gr.Row():
|
| 177 |
+
# text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
|
| 178 |
+
text_button = gr.Button("✨ Generate Image", variant='primary', elem_classes=["generate-btn"])
|
| 179 |
+
with gr.Column():
|
| 180 |
+
with gr.Row():
|
| 181 |
+
image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")
|
| 182 |
+
|
| 183 |
+
# gr.Markdown(article_text)
|
| 184 |
+
with gr.Column():
|
| 185 |
+
gr.Examples(
|
| 186 |
+
examples = examples,
|
| 187 |
+
inputs = [text_prompt],
|
| 188 |
+
)
|
| 189 |
+
gr.on(
|
| 190 |
+
triggers=[text_button.click, text_prompt.submit],
|
| 191 |
+
fn = infer,
|
| 192 |
+
inputs=[text_prompt, seed, randomize_seed, width, height, cfg, steps, custom_lora, lora_scale],
|
| 193 |
+
outputs=[image_output, seed]
|
| 194 |
+
)
|
| 195 |
+
|
| 196 |
+
# text_button.click(query, inputs=[custom_lora, text_prompt, steps, cfg, randomize_seed, seed, width, height], outputs=[image_output,seed_output, seed])
|
| 197 |
+
# text_button.click(infer, inputs=[text_prompt, seed, randomize_seed, width, height, cfg, steps, custom_lora, lora_scale], outputs=[image_output,seed_output, seed])
|
| 198 |
+
|
| 199 |
+
app.launch(share=True)
|