Spaces:
Running
on
Zero
Running
on
Zero
import inspect, math | |
from typing import Callable, List, Optional, Union | |
from dataclasses import dataclass | |
import PIL | |
from PIL import Image | |
import numpy as np | |
import torch | |
import kornia | |
import torch.distributed as dist | |
from tqdm import tqdm | |
from diffusers.utils import is_accelerate_available | |
from packaging import version | |
from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection,CLIPFeatureExtractor | |
from diffusers.configuration_utils import FrozenDict | |
from diffusers.models import AutoencoderKL, UNet2DConditionModel | |
from diffusers import DiffusionPipeline | |
from diffusers.schedulers import ( | |
DDIMScheduler, | |
DPMSolverMultistepScheduler, | |
EulerAncestralDiscreteScheduler, | |
EulerDiscreteScheduler, | |
LMSDiscreteScheduler, | |
PNDMScheduler, | |
) | |
from diffusers.utils import deprecate, logging, BaseOutput | |
from einops import rearrange | |
from ref_encoder.latent_controlnet import ControlNetModel | |
from ref_encoder.reference_control import ReferenceAttentionControl | |
import torch.nn.functional as F | |
from diffusers.configuration_utils import ConfigMixin | |
from diffusers.models.modeling_utils import ModelMixin | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class CCProjection(ModelMixin, ConfigMixin): | |
def __init__(self, in_channel=772, out_channel=768): | |
super().__init__() | |
self.in_channel = in_channel | |
self.out_channel = out_channel | |
self.projection = torch.nn.Linear(in_channel, out_channel) | |
def forward(self, x): | |
return self.projection(x) | |
class PipelineOutput(BaseOutput): | |
samples: Union[torch.Tensor, np.ndarray] | |
class Hair3dPipeline(DiffusionPipeline): | |
_optional_components = [] | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
unet: UNet2DConditionModel, | |
controlnet: ControlNetModel, | |
# cc_projection: CCProjection, | |
image_encoder: CLIPVisionModelWithProjection, | |
feature_extractor: CLIPFeatureExtractor, | |
scheduler: Union[ | |
DDIMScheduler, | |
PNDMScheduler, | |
LMSDiscreteScheduler, | |
EulerDiscreteScheduler, | |
EulerAncestralDiscreteScheduler, | |
DPMSolverMultistepScheduler, | |
], | |
): | |
super().__init__() | |
self.register_modules( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
controlnet=controlnet, | |
scheduler=scheduler, | |
image_encoder=image_encoder, | |
feature_extractor=feature_extractor, | |
# cc_projection=cc_projection, | |
) | |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
def enable_vae_slicing(self): | |
self.vae.enable_slicing() | |
def disable_vae_slicing(self): | |
self.vae.disable_slicing() | |
def enable_sequential_cpu_offload(self, gpu_id=0): | |
if is_accelerate_available(): | |
from accelerate import cpu_offload | |
else: | |
raise ImportError("Please install accelerate via `pip install accelerate`") | |
device = torch.device(f"cuda:{gpu_id}") | |
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]: | |
if cpu_offloaded_model is not None: | |
cpu_offload(cpu_offloaded_model, device) | |
def _execution_device(self): | |
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"): | |
return self.device | |
for module in self.unet.modules(): | |
if ( | |
hasattr(module, "_hf_hook") | |
and hasattr(module._hf_hook, "execution_device") | |
and module._hf_hook.execution_device is not None | |
): | |
return torch.device(module._hf_hook.execution_device) | |
return self.device | |
def CLIP_preprocess(self, x): | |
dtype = x.dtype | |
# following openai's implementation | |
# TODO HF OpenAI CLIP preprocessing issue https://github.com/huggingface/transformers/issues/22505#issuecomment-1650170741 | |
# follow openai preprocessing to keep exact same, input tensor [-1, 1], otherwise the preprocessing will be different, https://github.com/huggingface/transformers/pull/22608 | |
if isinstance(x, torch.Tensor): | |
if x.min() < -1.0 or x.max() > 1.0: | |
raise ValueError("Expected input tensor to have values in the range [-1, 1]") | |
x = kornia.geometry.resize(x.to(torch.float32), (224, 224), interpolation='bicubic', align_corners=True, antialias=False).to(dtype=dtype) | |
x = (x + 1.) / 2. | |
# renormalize according to clip | |
x = kornia.enhance.normalize(x, torch.Tensor([0.48145466, 0.4578275, 0.40821073]), | |
torch.Tensor([0.26862954, 0.26130258, 0.27577711])) | |
return x | |
# from image_variation | |
def _encode_image(self, image, device, num_images_per_prompt, do_classifier_free_guidance): | |
dtype = next(self.image_encoder.parameters()).dtype | |
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): | |
raise ValueError( | |
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" | |
) | |
if isinstance(image, torch.Tensor): | |
# Batch single image | |
if image.ndim == 3: | |
assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)" | |
image = image.unsqueeze(0) | |
assert image.ndim == 4, "Image must have 4 dimensions" | |
# Check image is in [-1, 1] | |
if image.min() < -1 or image.max() > 1: | |
raise ValueError("Image should be in [-1, 1] range") | |
else: | |
# preprocess image | |
if isinstance(image, (PIL.Image.Image, np.ndarray)): | |
image = [image] | |
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image): | |
image = [np.array(i.convert("RGB"))[None, :] for i in image] | |
image = np.concatenate(image, axis=0) | |
elif isinstance(image, list) and isinstance(image[0], np.ndarray): | |
image = np.concatenate([i[None, :] for i in image], axis=0) | |
image = image.transpose(0, 3, 1, 2) | |
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 | |
image = image.to(device=device, dtype=dtype) | |
image = self.CLIP_preprocess(image) | |
# if not isinstance(image, torch.Tensor): | |
# # 0-255 | |
# print("Warning: image is processed by hf's preprocess, which is different from openai original's.") | |
# image = self.feature_extractor(images=image, return_tensors="pt").pixel_values | |
image_embeddings = self.image_encoder(image).image_embeds.to(dtype=dtype) | |
image_embeddings = image_embeddings.unsqueeze(1) | |
# duplicate image embeddings for each generation per prompt, using mps friendly method | |
bs_embed, seq_len, _ = image_embeddings.shape | |
image_embeddings = image_embeddings.repeat(1, num_images_per_prompt, 1) | |
image_embeddings = image_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
if do_classifier_free_guidance: | |
negative_prompt_embeds = torch.zeros_like(image_embeddings) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings]) | |
return image_embeddings | |
def _encode_pose(self, pose, device, num_images_per_prompt, do_classifier_free_guidance): | |
dtype = next(self.unet.parameters()).dtype | |
if isinstance(pose, torch.Tensor): | |
pose_embeddings = pose.unsqueeze(0).to(device=device, dtype=dtype) | |
pose_embeddings = pose_embeddings.unsqueeze(0).to(device=device, dtype=dtype) | |
else: | |
if isinstance(pose[0], list): | |
pose = torch.Tensor(pose) | |
else: | |
pose = torch.Tensor([pose]) | |
x, y, z = pose[:,0].unsqueeze(1), pose[:,1].unsqueeze(1), pose[:,2].unsqueeze(1) | |
pose_embeddings = torch.cat([torch.deg2rad(x), | |
torch.sin(torch.deg2rad(y)), | |
torch.cos(torch.deg2rad(y)), | |
z], dim=-1).unsqueeze(1).to(device=device, dtype=dtype) # B, 1, 4 | |
# duplicate pose embeddings for each generation per prompt, using mps friendly method | |
bs_embed, seq_len, _ = pose_embeddings.shape | |
pose_embeddings = pose_embeddings.repeat(1, num_images_per_prompt, 1) | |
pose_embeddings = pose_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
if do_classifier_free_guidance: | |
negative_prompt_embeds = torch.zeros_like(pose_embeddings) | |
pose_embeddings = torch.cat([negative_prompt_embeds, pose_embeddings]) | |
return pose_embeddings | |
def _encode_image_with_pose(self, image, pose, device, num_images_per_prompt, do_classifier_free_guidance): | |
img_prompt_embeds = self._encode_image(image, device, num_images_per_prompt, False) | |
pose_prompt_embeds = self._encode_pose(pose, device, num_images_per_prompt, False) | |
prompt_embeds = torch.cat([img_prompt_embeds, pose_prompt_embeds], dim=-1) | |
prompt_embeds = self.cc_projection(prompt_embeds) | |
# follow 0123, add negative prompt, after projection | |
if do_classifier_free_guidance: | |
negative_prompt = torch.zeros_like(prompt_embeds) | |
prompt_embeds = torch.cat([negative_prompt, prompt_embeds]) | |
return prompt_embeds | |
def _encode_prompt(self, prompt, device, do_classifier_free_guidance, negative_prompt): | |
if isinstance(prompt, torch.Tensor): | |
batch_size = prompt.shape[0] | |
text_input_ids = prompt | |
else: | |
batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, | |
untruncated_ids): | |
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1: -1]) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = text_inputs.attention_mask.to(device) | |
else: | |
attention_mask = None | |
text_embeddings = self.text_encoder( | |
text_input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
text_embeddings = text_embeddings[0] | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
bs_embed, seq_len, _ = text_embeddings.shape | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance: | |
uncond_tokens: List[str] | |
if negative_prompt is None: | |
uncond_tokens = [""] * batch_size | |
elif type(prompt) is not type(negative_prompt): | |
raise TypeError( | |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}." | |
) | |
elif isinstance(negative_prompt, str): | |
uncond_tokens = [negative_prompt] | |
elif batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
else: | |
uncond_tokens = negative_prompt | |
max_length = text_input_ids.shape[-1] | |
uncond_input = self.tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = uncond_input.attention_mask.to(device) | |
else: | |
attention_mask = None | |
uncond_embeddings = self.text_encoder( | |
uncond_input.input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
uncond_embeddings = uncond_embeddings[0] | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = uncond_embeddings.shape[1] | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | |
return text_embeddings | |
def decode_latents(self, latents): | |
latents = 1 / 0.18215 * latents | |
image = self.vae.decode(latents).sample | |
print("image", torch.max(image), torch.min(image)) | |
image = (image / 2 + 0.5).clamp(0, 1).permute(0, 2, 3, 1) | |
image = image.cpu().squeeze(0).float().numpy() | |
return image | |
def prepare_extra_step_kwargs(self, generator, eta): | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
def check_inputs(self, prompt, height, width, callback_steps): | |
if not isinstance(prompt, str) and not isinstance(prompt, list) and not isinstance(prompt, torch.Tensor): | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if height % 8 != 0 or width % 8 != 0: | |
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
if (callback_steps is None) or ( | |
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
): | |
raise ValueError( | |
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
f" {type(callback_steps)}." | |
) | |
def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): | |
if isinstance(generator, list): | |
image_latents = [ | |
self.vae.encode(image[i: i + 1]).latent_dist.sample(generator=generator[i]) | |
for i in range(image.shape[0]) | |
] | |
image_latents = torch.cat(image_latents, dim=0) | |
else: | |
image_latents = self.vae.encode(image).latent_dist.sample(generator=generator) | |
image_latents = self.vae.config.scaling_factor * image_latents | |
return image_latents | |
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None, | |
clip_length=16): | |
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if latents is None: | |
rand_device = "cpu" if device.type == "mps" else device | |
if isinstance(generator, list): | |
latents = [ | |
torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype) | |
for i in range(batch_size) | |
] | |
latents = torch.cat(latents, dim=0).to(device) | |
else: | |
latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device) | |
else: | |
if latents.shape != shape: | |
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") | |
latents = latents.to(device) | |
# scale the initial noise by the standard deviation required by the scheduler | |
noise = latents.clone() | |
latents = latents * self.scheduler.init_noise_sigma | |
return latents, noise | |
def prepare_condition(self, condition, device, dtype, do_classifier_free_guidance): | |
if isinstance(condition, torch.Tensor): | |
# suppose input is [-1, 1] | |
condition = condition | |
elif isinstance(condition, np.ndarray): | |
# suppose input is [0, 255] | |
condition = self.images2latents(condition, dtype).cuda() | |
if do_classifier_free_guidance: | |
condition_pad = torch.ones_like(condition) * -1 | |
condition = torch.cat([condition_pad, condition]) | |
return condition | |
def images2latents(self, images, dtype): | |
""" | |
Convert RGB image to VAE latents | |
""" | |
device = self._execution_device | |
if isinstance(images, torch.Tensor): | |
# suppose input is [-1, 1] | |
images = images.to(dtype) | |
if images.ndim == 3: | |
images = images.unsqueeze(0) | |
elif isinstance(images, np.ndarray): | |
# suppose input is [0, 255] | |
images = torch.from_numpy(images).float().to(dtype) / 127.5 - 1 | |
images = rearrange(images, "h w c -> c h w").to(device)[None, :] | |
latents = self.vae.encode(images)['latent_dist'].mean * self.vae.config.scaling_factor | |
return latents | |
def images2latents_new(self, images, dtype): | |
""" | |
Convert RGB image to VAE latents | |
""" | |
device = self._execution_device | |
if isinstance(images, torch.Tensor): | |
# suppose input is [-1, 1] | |
images = images.to(dtype) | |
if images.ndim == 3: | |
images = images.unsqueeze(0) | |
elif isinstance(images, np.ndarray): | |
# suppose input is [0, 255] | |
images = torch.from_numpy(images).float().to(dtype) / 255.0 | |
images = rearrange(images, "h w c -> c h w").to(device)[None, :] | |
latents = self.vae.encode(images)['latent_dist'].mean * self.vae.config.scaling_factor | |
return latents | |
def encode_single_image_latents(self, images, mask, dtype): | |
device = self._execution_device | |
images = torch.from_numpy(images).float().to(dtype) / 127.5 - 1 | |
images = rearrange(images, "h w c -> c h w").to(device) | |
latents = self.vae.encode(images[None, :])['latent_dist'].mean * 0.18215 | |
images = images.unsqueeze(0) | |
mask = torch.from_numpy(mask).float().to(dtype).to(device) / 255.0 | |
if mask.ndim == 2: | |
mask = mask[None, None, :] | |
elif mask.ndim == 3: | |
mask = mask[:, None, :, :] | |
mask = F.interpolate(mask, size=latents.shape[-2:], mode='nearest') | |
return latents, images, mask | |
def __call__( | |
self, | |
prompt: Union[str, List[str]], | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 7.5, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "np", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: Optional[int] = 1, | |
controlnet_condition: list = None, | |
controlnet_conditioning_scale: Optional[float] = 1.0, | |
init_latents: Optional[torch.FloatTensor] = None, | |
num_actual_inference_steps: Optional[int] = None, | |
reference_encoder=None, | |
ref_image=None, | |
t2i=False, | |
style_fidelity=1.0, | |
prompt_img = None, | |
poses = None, | |
**kwargs, | |
): | |
controlnet = self.controlnet | |
# Default height and width to unet | |
height = height or self.unet.config.sample_size * self.vae_scale_factor | |
width = width or self.unet.config.sample_size * self.vae_scale_factor | |
# Check inputs. Raise error if not correct | |
self.check_inputs(prompt, height, width, callback_steps) | |
# Define call parameters | |
# batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
batch_size = 1 | |
if latents is not None: | |
batch_size = latents.shape[0] | |
if isinstance(prompt, list): | |
batch_size = len(prompt) | |
device = self._execution_device | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# Encode input prompt | |
if not isinstance(prompt, torch.Tensor): | |
prompt = prompt if isinstance(prompt, list) else [prompt] * batch_size | |
if negative_prompt is not None: | |
negative_prompt = negative_prompt if isinstance(negative_prompt, list) else [negative_prompt] * batch_size | |
text_embeddings = self._encode_prompt( | |
prompt, device, do_classifier_free_guidance, negative_prompt | |
) | |
text_embeddings = torch.cat([text_embeddings]) | |
reference_control_writer = ReferenceAttentionControl(reference_encoder, do_classifier_free_guidance=True, | |
style_fidelity=style_fidelity, | |
mode='write', fusion_blocks='full') | |
reference_control_reader = ReferenceAttentionControl(self.unet, do_classifier_free_guidance=True, mode='read', | |
style_fidelity=style_fidelity, | |
fusion_blocks='full') | |
is_dist_initialized = kwargs.get("dist", False) | |
rank = kwargs.get("rank", 0) | |
# Prepare control_img | |
control = self.prepare_condition( | |
condition=controlnet_condition, | |
device=device, | |
dtype=controlnet.dtype, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
) | |
# for b in range(control.size(0)): | |
# max_value = torch.max(control[b]) | |
# min_value = torch.min(control[b]) | |
# control[b] = (control[b] - min_value) / (max_value - min_value) | |
# Prepare timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
num_channels_latents = self.unet.in_channels | |
latents = self.prepare_latents( | |
batch_size, | |
num_channels_latents, | |
height, | |
width, | |
text_embeddings.dtype, | |
device, | |
generator, | |
latents, | |
) | |
if isinstance(latents, tuple): | |
latents, noise = latents | |
latents_dtype = latents.dtype | |
# Prepare extra step kwargs. | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# For img2img setting | |
if num_actual_inference_steps is None: | |
num_actual_inference_steps = num_inference_steps | |
if isinstance(ref_image, str): | |
ref_image_latents = self.images2latents(np.array(Image.open(ref_image).resize((width, height))), | |
latents_dtype).cuda() | |
elif isinstance(ref_image, np.ndarray): | |
ref_image_latents = self.images2latents(ref_image, latents_dtype).cuda() | |
elif isinstance(ref_image, torch.Tensor): | |
ref_image_latents = self.images2latents(ref_image, latents_dtype).cuda() | |
ref_padding_latents = torch.ones_like(ref_image_latents) * -1 | |
ref_image_latents = torch.cat([ref_padding_latents, ref_image_latents]) if do_classifier_free_guidance else ref_image_latents | |
# prompt_embeds = self._encode_image_with_pose(prompt_img, poses, device, 1, do_classifier_free_guidance) | |
# Denoising loop | |
for i, t in tqdm(enumerate(timesteps), total=len(timesteps), disable=(rank != 0)): | |
if num_actual_inference_steps is not None and i < num_inference_steps - num_actual_inference_steps: | |
continue | |
# writer | |
ref_latents_input = ref_image_latents | |
reference_encoder( | |
ref_latents_input, | |
t, | |
# encoder_hidden_states=prompt_embeds, | |
encoder_hidden_states=text_embeddings, | |
return_dict=False, | |
) | |
reference_control_reader.update(reference_control_writer) | |
# prepare latents | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
if t2i: | |
pass | |
else: | |
# controlnet | |
down_block_res_samples, mid_block_res_sample = self.controlnet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=text_embeddings, | |
controlnet_cond=control, | |
return_dict=False, | |
) | |
down_block_res_samples = [sample * controlnet_conditioning_scale for sample in down_block_res_samples] | |
mid_block_res_sample = mid_block_res_sample * controlnet_conditioning_scale | |
# predict the noise residual | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=text_embeddings, | |
down_block_additional_residuals=down_block_res_samples, | |
mid_block_additional_residual=mid_block_res_sample, | |
return_dict=False, | |
)[0] | |
# clean the reader | |
reference_control_reader.clear() | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
if is_dist_initialized: | |
dist.broadcast(latents, 0) | |
dist.barrier() | |
reference_control_writer.clear() | |
samples = self.decode_latents(latents) | |
if is_dist_initialized: | |
dist.barrier() | |
# Convert to tensor | |
if output_type == "tensor": | |
samples = torch.from_numpy(samples) | |
if not return_dict: | |
return samples | |
return PipelineOutput(samples=samples) | |
class Hair3dPipeline_controlnet_simple(DiffusionPipeline): | |
_optional_components = [] | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
unet: UNet2DConditionModel, | |
controlnet: ControlNetModel, | |
cc_projection: CCProjection, | |
image_encoder: CLIPVisionModelWithProjection, | |
feature_extractor: CLIPFeatureExtractor, | |
scheduler: Union[ | |
DDIMScheduler, | |
PNDMScheduler, | |
LMSDiscreteScheduler, | |
EulerDiscreteScheduler, | |
EulerAncestralDiscreteScheduler, | |
DPMSolverMultistepScheduler, | |
], | |
): | |
super().__init__() | |
self.register_modules( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
controlnet=controlnet, | |
scheduler=scheduler, | |
image_encoder=image_encoder, | |
feature_extractor=feature_extractor, | |
cc_projection=cc_projection, | |
) | |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
def enable_vae_slicing(self): | |
self.vae.enable_slicing() | |
def disable_vae_slicing(self): | |
self.vae.disable_slicing() | |
def enable_sequential_cpu_offload(self, gpu_id=0): | |
if is_accelerate_available(): | |
from accelerate import cpu_offload | |
else: | |
raise ImportError("Please install accelerate via `pip install accelerate`") | |
device = torch.device(f"cuda:{gpu_id}") | |
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]: | |
if cpu_offloaded_model is not None: | |
cpu_offload(cpu_offloaded_model, device) | |
def _execution_device(self): | |
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"): | |
return self.device | |
for module in self.unet.modules(): | |
if ( | |
hasattr(module, "_hf_hook") | |
and hasattr(module._hf_hook, "execution_device") | |
and module._hf_hook.execution_device is not None | |
): | |
return torch.device(module._hf_hook.execution_device) | |
return self.device | |
def CLIP_preprocess(self, x): | |
dtype = x.dtype | |
# following openai's implementation | |
# TODO HF OpenAI CLIP preprocessing issue https://github.com/huggingface/transformers/issues/22505#issuecomment-1650170741 | |
# follow openai preprocessing to keep exact same, input tensor [-1, 1], otherwise the preprocessing will be different, https://github.com/huggingface/transformers/pull/22608 | |
if isinstance(x, torch.Tensor): | |
if x.min() < -1.0 or x.max() > 1.0: | |
raise ValueError("Expected input tensor to have values in the range [-1, 1]") | |
x = kornia.geometry.resize(x.to(torch.float32), (224, 224), interpolation='bicubic', align_corners=True, antialias=False).to(dtype=dtype) | |
x = (x + 1.) / 2. | |
# renormalize according to clip | |
x = kornia.enhance.normalize(x, torch.Tensor([0.48145466, 0.4578275, 0.40821073]), | |
torch.Tensor([0.26862954, 0.26130258, 0.27577711])) | |
return x | |
# from image_variation | |
def _encode_image(self, image, device, num_images_per_prompt, do_classifier_free_guidance): | |
dtype = next(self.image_encoder.parameters()).dtype | |
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): | |
raise ValueError( | |
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" | |
) | |
if isinstance(image, torch.Tensor): | |
# Batch single image | |
if image.ndim == 3: | |
assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)" | |
image = image.unsqueeze(0) | |
assert image.ndim == 4, "Image must have 4 dimensions" | |
# Check image is in [-1, 1] | |
if image.min() < -1 or image.max() > 1: | |
raise ValueError("Image should be in [-1, 1] range") | |
else: | |
# preprocess image | |
if isinstance(image, (PIL.Image.Image, np.ndarray)): | |
image = [image] | |
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image): | |
image = [np.array(i.convert("RGB"))[None, :] for i in image] | |
image = np.concatenate(image, axis=0) | |
elif isinstance(image, list) and isinstance(image[0], np.ndarray): | |
image = np.concatenate([i[None, :] for i in image], axis=0) | |
image = image.transpose(0, 3, 1, 2) | |
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 | |
image = image.to(device=device, dtype=dtype) | |
image = self.CLIP_preprocess(image) | |
# if not isinstance(image, torch.Tensor): | |
# # 0-255 | |
# print("Warning: image is processed by hf's preprocess, which is different from openai original's.") | |
# image = self.feature_extractor(images=image, return_tensors="pt").pixel_values | |
image_embeddings = self.image_encoder(image).image_embeds.to(dtype=dtype) | |
image_embeddings = image_embeddings.unsqueeze(1) | |
# duplicate image embeddings for each generation per prompt, using mps friendly method | |
bs_embed, seq_len, _ = image_embeddings.shape | |
image_embeddings = image_embeddings.repeat(1, num_images_per_prompt, 1) | |
image_embeddings = image_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
if do_classifier_free_guidance: | |
negative_prompt_embeds = torch.zeros_like(image_embeddings) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings]) | |
return image_embeddings | |
def _encode_pose(self, pose, device, num_images_per_prompt, do_classifier_free_guidance): | |
dtype = next(self.unet.parameters()).dtype | |
if isinstance(pose, torch.Tensor): | |
pose_embeddings = pose.unsqueeze(0).to(device=device, dtype=dtype) | |
#pose_embeddings = pose_embeddings.unsqueeze(0).to(device=device, dtype=dtype) | |
else: | |
if isinstance(pose[0], list): | |
pose = torch.Tensor(pose) | |
else: | |
pose = torch.Tensor([pose]) | |
x, y, z = pose[:,0].unsqueeze(1), pose[:,1].unsqueeze(1), pose[:,2].unsqueeze(1) | |
pose_embeddings = torch.cat([torch.deg2rad(x), | |
torch.sin(torch.deg2rad(y)), | |
torch.cos(torch.deg2rad(y)), | |
z], dim=-1).unsqueeze(1).to(device=device, dtype=dtype) # B, 1, 4 | |
# duplicate pose embeddings for each generation per prompt, using mps friendly method | |
bs_embed, seq_len, _ = pose_embeddings.shape | |
# pose_embeddings = pose_embeddings.repeat(1, num_images_per_prompt, 1) | |
# pose_embeddings = pose_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
if do_classifier_free_guidance: | |
negative_prompt_embeds = torch.zeros_like(pose_embeddings) | |
pose_embeddings = torch.cat([negative_prompt_embeds, pose_embeddings]) | |
return pose_embeddings | |
def _encode_image_with_pose(self, image, pose, device, num_images_per_prompt, do_classifier_free_guidance): | |
img_prompt_embeds = self._encode_image(image, device, num_images_per_prompt, False) | |
pose_prompt_embeds = self._encode_pose(pose, device, num_images_per_prompt, False) | |
prompt_embeds = torch.cat([img_prompt_embeds, pose_prompt_embeds], dim=-1) | |
prompt_embeds = self.cc_projection(prompt_embeds) | |
prompt_embeds = img_prompt_embeds | |
# follow 0123, add negative prompt, after projection | |
if do_classifier_free_guidance: | |
negative_prompt = torch.zeros_like(prompt_embeds) | |
prompt_embeds = torch.cat([negative_prompt, prompt_embeds]) | |
return prompt_embeds | |
def _encode_prompt(self, prompt, device, do_classifier_free_guidance, negative_prompt): | |
if isinstance(prompt, torch.Tensor): | |
batch_size = prompt.shape[0] | |
text_input_ids = prompt | |
else: | |
batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, | |
untruncated_ids): | |
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1: -1]) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = text_inputs.attention_mask.to(device) | |
else: | |
attention_mask = None | |
text_embeddings = self.text_encoder( | |
text_input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
text_embeddings = text_embeddings[0] | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
bs_embed, seq_len, _ = text_embeddings.shape | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance: | |
uncond_tokens: List[str] | |
if negative_prompt is None: | |
uncond_tokens = [""] * batch_size | |
elif type(prompt) is not type(negative_prompt): | |
raise TypeError( | |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}." | |
) | |
elif isinstance(negative_prompt, str): | |
uncond_tokens = [negative_prompt] | |
elif batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
else: | |
uncond_tokens = negative_prompt | |
max_length = text_input_ids.shape[-1] | |
uncond_input = self.tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = uncond_input.attention_mask.to(device) | |
else: | |
attention_mask = None | |
uncond_embeddings = self.text_encoder( | |
uncond_input.input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
uncond_embeddings = uncond_embeddings[0] | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = uncond_embeddings.shape[1] | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | |
return text_embeddings | |
def decode_latents(self, latents): | |
latents = 1 / 0.18215 * latents | |
image = self.vae.decode(latents).sample | |
print("image", torch.max(image), torch.min(image)) | |
image = (image / 2 + 0.5).clamp(0, 1).permute(0, 2, 3, 1) | |
image = image.cpu().squeeze(0).float().numpy() | |
return image | |
def prepare_extra_step_kwargs(self, generator, eta): | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
def check_inputs(self, prompt, height, width, callback_steps): | |
if not isinstance(prompt, str) and not isinstance(prompt, list) and not isinstance(prompt, torch.Tensor): | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if height % 8 != 0 or width % 8 != 0: | |
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
if (callback_steps is None) or ( | |
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
): | |
raise ValueError( | |
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
f" {type(callback_steps)}." | |
) | |
def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): | |
if isinstance(generator, list): | |
image_latents = [ | |
self.vae.encode(image[i: i + 1]).latent_dist.sample(generator=generator[i]) | |
for i in range(image.shape[0]) | |
] | |
image_latents = torch.cat(image_latents, dim=0) | |
else: | |
image_latents = self.vae.encode(image).latent_dist.sample(generator=generator) | |
image_latents = self.vae.config.scaling_factor * image_latents | |
return image_latents | |
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None, | |
clip_length=16): | |
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if latents is None: | |
rand_device = "cpu" if device.type == "mps" else device | |
if isinstance(generator, list): | |
latents = [ | |
torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype) | |
for i in range(batch_size) | |
] | |
latents = torch.cat(latents, dim=0).to(device) | |
else: | |
latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device) | |
else: | |
if latents.shape != shape: | |
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") | |
latents = latents.to(device) | |
# scale the initial noise by the standard deviation required by the scheduler | |
noise = latents.clone() | |
latents = latents * self.scheduler.init_noise_sigma | |
return latents, noise | |
def prepare_condition(self, condition, device, dtype, do_classifier_free_guidance): | |
if isinstance(condition, torch.Tensor): | |
# suppose input is [-1, 1] | |
condition = condition | |
elif isinstance(condition, np.ndarray): | |
# suppose input is [0, 255] | |
condition = self.images2latents(condition, dtype).cuda() | |
if do_classifier_free_guidance: | |
condition_pad = torch.ones_like(condition) * -1 | |
condition = torch.cat([condition_pad, condition]) | |
return condition | |
def images2latents(self, images, dtype): | |
""" | |
Convert RGB image to VAE latents | |
""" | |
device = self._execution_device | |
if isinstance(images, torch.Tensor): | |
# suppose input is [-1, 1] | |
images = images.to(dtype) | |
if images.ndim == 3: | |
images = images.unsqueeze(0) | |
elif isinstance(images, np.ndarray): | |
# suppose input is [0, 255] | |
images = torch.from_numpy(images).float().to(dtype) / 127.5 - 1 | |
images = rearrange(images, "h w c -> c h w").to(device)[None, :] | |
latents = self.vae.encode(images)['latent_dist'].mean * self.vae.config.scaling_factor | |
return latents | |
def images2latents_new(self, images, dtype): | |
""" | |
Convert RGB image to VAE latents | |
""" | |
device = self._execution_device | |
if isinstance(images, torch.Tensor): | |
# suppose input is [-1, 1] | |
images = images.to(dtype) | |
if images.ndim == 3: | |
images = images.unsqueeze(0) | |
elif isinstance(images, np.ndarray): | |
# suppose input is [0, 255] | |
images = torch.from_numpy(images).float().to(dtype) / 255.0 | |
images = rearrange(images, "h w c -> c h w").to(device)[None, :] | |
latents = self.vae.encode(images)['latent_dist'].mean * self.vae.config.scaling_factor | |
return latents | |
def encode_single_image_latents(self, images, mask, dtype): | |
device = self._execution_device | |
images = torch.from_numpy(images).float().to(dtype) / 127.5 - 1 | |
images = rearrange(images, "h w c -> c h w").to(device) | |
latents = self.vae.encode(images[None, :])['latent_dist'].mean * 0.18215 | |
images = images.unsqueeze(0) | |
mask = torch.from_numpy(mask).float().to(dtype).to(device) / 255.0 | |
if mask.ndim == 2: | |
mask = mask[None, None, :] | |
elif mask.ndim == 3: | |
mask = mask[:, None, :, :] | |
mask = F.interpolate(mask, size=latents.shape[-2:], mode='nearest') | |
return latents, images, mask | |
def __call__( | |
self, | |
prompt: Union[str, List[str]], | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 7.5, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "np", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: Optional[int] = 1, | |
controlnet_condition: list = None, | |
controlnet_conditioning_scale: Optional[float] = 1.0, | |
init_latents: Optional[torch.FloatTensor] = None, | |
num_actual_inference_steps: Optional[int] = None, | |
reference_encoder=None, | |
ref_image=None, | |
t2i=False, | |
style_fidelity=1.0, | |
prompt_img = None, | |
poses = None, | |
**kwargs, | |
): | |
controlnet = self.controlnet | |
# Default height and width to unet | |
height = height or self.unet.config.sample_size * self.vae_scale_factor | |
width = width or self.unet.config.sample_size * self.vae_scale_factor | |
# Check inputs. Raise error if not correct | |
self.check_inputs(prompt, height, width, callback_steps) | |
# Define call parameters | |
# batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
batch_size = 1 | |
if latents is not None: | |
batch_size = latents.shape[0] | |
if isinstance(prompt, list): | |
batch_size = len(prompt) | |
device = self._execution_device | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# Encode input prompt | |
if not isinstance(prompt, torch.Tensor): | |
prompt = prompt if isinstance(prompt, list) else [prompt] * batch_size | |
if negative_prompt is not None: | |
negative_prompt = negative_prompt if isinstance(negative_prompt, list) else [negative_prompt] * batch_size | |
text_embeddings = self._encode_prompt( | |
prompt, device, do_classifier_free_guidance, negative_prompt | |
) | |
text_embeddings = torch.cat([text_embeddings]) | |
# reference_control_writer = ReferenceAttentionControl(reference_encoder, do_classifier_free_guidance=True, | |
# style_fidelity=style_fidelity, | |
# mode='write', fusion_blocks='full') | |
# reference_control_reader = ReferenceAttentionControl(self.unet, do_classifier_free_guidance=True, mode='read', | |
# style_fidelity=style_fidelity, | |
# fusion_blocks='full') | |
is_dist_initialized = kwargs.get("dist", False) | |
rank = kwargs.get("rank", 0) | |
# Prepare control_img | |
control = self.prepare_condition( | |
condition=controlnet_condition, | |
device=device, | |
dtype=controlnet.dtype, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
) | |
# for b in range(control.size(0)): | |
# max_value = torch.max(control[b]) | |
# min_value = torch.min(control[b]) | |
# control[b] = (control[b] - min_value) / (max_value - min_value) | |
# Prepare timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
num_channels_latents = self.unet.in_channels | |
latents = self.prepare_latents( | |
batch_size, | |
num_channels_latents, | |
height, | |
width, | |
text_embeddings.dtype, | |
device, | |
generator, | |
latents, | |
) | |
if isinstance(latents, tuple): | |
latents, noise = latents | |
latents_dtype = latents.dtype | |
# Prepare extra step kwargs. | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# For img2img setting | |
if num_actual_inference_steps is None: | |
num_actual_inference_steps = num_inference_steps | |
if isinstance(ref_image, str): | |
ref_image_latents = self.images2latents(np.array(Image.open(ref_image).resize((width, height))), | |
latents_dtype).cuda() | |
elif isinstance(ref_image, np.ndarray): | |
ref_image_latents = self.images2latents(ref_image, latents_dtype).cuda() | |
elif isinstance(ref_image, torch.Tensor): | |
ref_image_latents = self.images2latents(ref_image, latents_dtype).cuda() | |
ref_padding_latents = torch.ones_like(ref_image_latents) * -1 | |
ref_image_latents = torch.cat([ref_padding_latents, ref_image_latents]) if do_classifier_free_guidance else ref_image_latents | |
prompt_embeds = self._encode_image_with_pose(prompt_img, poses, device, 1, do_classifier_free_guidance) | |
# Denoising loop | |
for i, t in tqdm(enumerate(timesteps), total=len(timesteps), disable=(rank != 0)): | |
if num_actual_inference_steps is not None and i < num_inference_steps - num_actual_inference_steps: | |
continue | |
# writer | |
# ref_latents_input = ref_image_latents | |
# reference_encoder( | |
# ref_latents_input, | |
# t, | |
# encoder_hidden_states=text_embeddings, | |
# return_dict=False, | |
# ) | |
# reference_control_reader.update(reference_control_writer) | |
# prepare latents | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
if t2i: | |
pass | |
else: | |
# controlnet | |
down_block_res_samples, mid_block_res_sample = self.controlnet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
controlnet_cond=control, | |
return_dict=False, | |
) | |
down_block_res_samples = [sample * controlnet_conditioning_scale for sample in down_block_res_samples] | |
mid_block_res_sample = mid_block_res_sample * controlnet_conditioning_scale | |
# predict the noise residual | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=text_embeddings, | |
down_block_additional_residuals=down_block_res_samples, | |
mid_block_additional_residual=mid_block_res_sample, | |
return_dict=False, | |
)[0] | |
# clean the reader | |
# reference_control_reader.clear() | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
if is_dist_initialized: | |
dist.broadcast(latents, 0) | |
dist.barrier() | |
#reference_control_writer.clear() | |
samples = self.decode_latents(latents) | |
if is_dist_initialized: | |
dist.barrier() | |
# Convert to tensor | |
if output_type == "tensor": | |
samples = torch.from_numpy(samples) | |
if not return_dict: | |
return samples | |
return PipelineOutput(samples=samples) | |
class Hair3dPipeline_controlnet(DiffusionPipeline): | |
_optional_components = [] | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
unet: UNet2DConditionModel, | |
controlnet: ControlNetModel, | |
cc_projection: CCProjection, | |
image_encoder: CLIPVisionModelWithProjection, | |
feature_extractor: CLIPFeatureExtractor, | |
scheduler: Union[ | |
DDIMScheduler, | |
PNDMScheduler, | |
LMSDiscreteScheduler, | |
EulerDiscreteScheduler, | |
EulerAncestralDiscreteScheduler, | |
DPMSolverMultistepScheduler, | |
], | |
): | |
super().__init__() | |
self.register_modules( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
controlnet=controlnet, | |
scheduler=scheduler, | |
image_encoder=image_encoder, | |
feature_extractor=feature_extractor, | |
cc_projection=cc_projection, | |
) | |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
def enable_vae_slicing(self): | |
self.vae.enable_slicing() | |
def disable_vae_slicing(self): | |
self.vae.disable_slicing() | |
def enable_sequential_cpu_offload(self, gpu_id=0): | |
if is_accelerate_available(): | |
from accelerate import cpu_offload | |
else: | |
raise ImportError("Please install accelerate via `pip install accelerate`") | |
device = torch.device(f"cuda:{gpu_id}") | |
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]: | |
if cpu_offloaded_model is not None: | |
cpu_offload(cpu_offloaded_model, device) | |
def _execution_device(self): | |
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"): | |
return self.device | |
for module in self.unet.modules(): | |
if ( | |
hasattr(module, "_hf_hook") | |
and hasattr(module._hf_hook, "execution_device") | |
and module._hf_hook.execution_device is not None | |
): | |
return torch.device(module._hf_hook.execution_device) | |
return self.device | |
def CLIP_preprocess(self, x): | |
dtype = x.dtype | |
# following openai's implementation | |
# TODO HF OpenAI CLIP preprocessing issue https://github.com/huggingface/transformers/issues/22505#issuecomment-1650170741 | |
# follow openai preprocessing to keep exact same, input tensor [-1, 1], otherwise the preprocessing will be different, https://github.com/huggingface/transformers/pull/22608 | |
if isinstance(x, torch.Tensor): | |
if x.min() < -1.0 or x.max() > 1.0: | |
raise ValueError("Expected input tensor to have values in the range [-1, 1]") | |
x = kornia.geometry.resize(x.to(torch.float32), (224, 224), interpolation='bicubic', align_corners=True, antialias=False).to(dtype=dtype) | |
x = (x + 1.) / 2. | |
# renormalize according to clip | |
x = kornia.enhance.normalize(x, torch.Tensor([0.48145466, 0.4578275, 0.40821073]), | |
torch.Tensor([0.26862954, 0.26130258, 0.27577711])) | |
return x | |
# from image_variation | |
def _encode_image(self, image, device, num_images_per_prompt, do_classifier_free_guidance): | |
dtype = next(self.image_encoder.parameters()).dtype | |
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): | |
raise ValueError( | |
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" | |
) | |
if isinstance(image, torch.Tensor): | |
# Batch single image | |
if image.ndim == 3: | |
assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)" | |
image = image.unsqueeze(0) | |
assert image.ndim == 4, "Image must have 4 dimensions" | |
# Check image is in [-1, 1] | |
if image.min() < -1 or image.max() > 1: | |
raise ValueError("Image should be in [-1, 1] range") | |
else: | |
# preprocess image | |
if isinstance(image, (PIL.Image.Image, np.ndarray)): | |
image = [image] | |
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image): | |
image = [np.array(i.convert("RGB"))[None, :] for i in image] | |
image = np.concatenate(image, axis=0) | |
elif isinstance(image, list) and isinstance(image[0], np.ndarray): | |
image = np.concatenate([i[None, :] for i in image], axis=0) | |
image = image.transpose(0, 3, 1, 2) | |
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 | |
image = image.to(device=device, dtype=dtype) | |
image = self.CLIP_preprocess(image) | |
# if not isinstance(image, torch.Tensor): | |
# # 0-255 | |
# print("Warning: image is processed by hf's preprocess, which is different from openai original's.") | |
# image = self.feature_extractor(images=image, return_tensors="pt").pixel_values | |
image_embeddings = self.image_encoder(image).image_embeds.to(dtype=dtype) | |
image_embeddings = image_embeddings.unsqueeze(1) | |
# duplicate image embeddings for each generation per prompt, using mps friendly method | |
bs_embed, seq_len, _ = image_embeddings.shape | |
image_embeddings = image_embeddings.repeat(1, num_images_per_prompt, 1) | |
image_embeddings = image_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
if do_classifier_free_guidance: | |
negative_prompt_embeds = torch.zeros_like(image_embeddings) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings]) | |
return image_embeddings | |
def _encode_pose(self, pose, device, num_images_per_prompt, do_classifier_free_guidance): | |
dtype = next(self.unet.parameters()).dtype | |
if isinstance(pose, torch.Tensor): | |
pose_embeddings = pose.unsqueeze(0).to(device=device, dtype=dtype) | |
#pose_embeddings = pose_embeddings.unsqueeze(0).to(device=device, dtype=dtype) | |
else: | |
if isinstance(pose[0], list): | |
pose = torch.Tensor(pose) | |
else: | |
pose = torch.Tensor([pose]) | |
x, y, z = pose[:,0].unsqueeze(1), pose[:,1].unsqueeze(1), pose[:,2].unsqueeze(1) | |
pose_embeddings = torch.cat([torch.deg2rad(x), | |
torch.sin(torch.deg2rad(y)), | |
torch.cos(torch.deg2rad(y)), | |
z], dim=-1).unsqueeze(1).to(device=device, dtype=dtype) # B, 1, 4 | |
# duplicate pose embeddings for each generation per prompt, using mps friendly method | |
bs_embed, seq_len, _ = pose_embeddings.shape | |
# pose_embeddings = pose_embeddings.repeat(1, num_images_per_prompt, 1) | |
# pose_embeddings = pose_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
if do_classifier_free_guidance: | |
negative_prompt_embeds = torch.zeros_like(pose_embeddings) | |
pose_embeddings = torch.cat([negative_prompt_embeds, pose_embeddings]) | |
return pose_embeddings | |
def _encode_image_with_pose(self, image, pose, device, num_images_per_prompt, do_classifier_free_guidance): | |
img_prompt_embeds = self._encode_image(image, device, num_images_per_prompt, False) | |
pose_prompt_embeds = self._encode_pose(pose, device, num_images_per_prompt, False) | |
prompt_embeds = torch.cat([img_prompt_embeds, pose_prompt_embeds], dim=-1) | |
prompt_embeds = self.cc_projection(prompt_embeds) | |
prompt_embeds = img_prompt_embeds | |
# follow 0123, add negative prompt, after projection | |
if do_classifier_free_guidance: | |
negative_prompt = torch.zeros_like(prompt_embeds) | |
prompt_embeds = torch.cat([negative_prompt, prompt_embeds]) | |
return prompt_embeds | |
def _encode_prompt(self, prompt, device, do_classifier_free_guidance, negative_prompt): | |
if isinstance(prompt, torch.Tensor): | |
batch_size = prompt.shape[0] | |
text_input_ids = prompt | |
else: | |
batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, | |
untruncated_ids): | |
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1: -1]) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = text_inputs.attention_mask.to(device) | |
else: | |
attention_mask = None | |
text_embeddings = self.text_encoder( | |
text_input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
text_embeddings = text_embeddings[0] | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
bs_embed, seq_len, _ = text_embeddings.shape | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance: | |
uncond_tokens: List[str] | |
if negative_prompt is None: | |
uncond_tokens = [""] * batch_size | |
elif type(prompt) is not type(negative_prompt): | |
raise TypeError( | |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}." | |
) | |
elif isinstance(negative_prompt, str): | |
uncond_tokens = [negative_prompt] | |
elif batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
else: | |
uncond_tokens = negative_prompt | |
max_length = text_input_ids.shape[-1] | |
uncond_input = self.tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = uncond_input.attention_mask.to(device) | |
else: | |
attention_mask = None | |
uncond_embeddings = self.text_encoder( | |
uncond_input.input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
uncond_embeddings = uncond_embeddings[0] | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = uncond_embeddings.shape[1] | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | |
return text_embeddings | |
def decode_latents(self, latents): | |
latents = 1 / 0.18215 * latents | |
image = self.vae.decode(latents).sample | |
print("image", torch.max(image), torch.min(image)) | |
image = (image / 2 + 0.5).clamp(0, 1).permute(0, 2, 3, 1) | |
image = image.cpu().squeeze(0).float().numpy() | |
return image | |
def prepare_extra_step_kwargs(self, generator, eta): | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
def check_inputs(self, prompt, height, width, callback_steps): | |
if not isinstance(prompt, str) and not isinstance(prompt, list) and not isinstance(prompt, torch.Tensor): | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if height % 8 != 0 or width % 8 != 0: | |
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
if (callback_steps is None) or ( | |
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
): | |
raise ValueError( | |
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
f" {type(callback_steps)}." | |
) | |
def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): | |
if isinstance(generator, list): | |
image_latents = [ | |
self.vae.encode(image[i: i + 1]).latent_dist.sample(generator=generator[i]) | |
for i in range(image.shape[0]) | |
] | |
image_latents = torch.cat(image_latents, dim=0) | |
else: | |
image_latents = self.vae.encode(image).latent_dist.sample(generator=generator) | |
image_latents = self.vae.config.scaling_factor * image_latents | |
return image_latents | |
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None, | |
clip_length=16): | |
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if latents is None: | |
rand_device = "cpu" if device.type == "mps" else device | |
if isinstance(generator, list): | |
latents = [ | |
torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype) | |
for i in range(batch_size) | |
] | |
latents = torch.cat(latents, dim=0).to(device) | |
else: | |
latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device) | |
else: | |
if latents.shape != shape: | |
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") | |
latents = latents.to(device) | |
# scale the initial noise by the standard deviation required by the scheduler | |
noise = latents.clone() | |
latents = latents * self.scheduler.init_noise_sigma | |
return latents, noise | |
def prepare_condition(self, condition, device, dtype, do_classifier_free_guidance): | |
if isinstance(condition, torch.Tensor): | |
# suppose input is [-1, 1] | |
condition = condition | |
elif isinstance(condition, np.ndarray): | |
# suppose input is [0, 255] | |
condition = self.images2latents(condition, dtype).cuda() | |
condition = condition/self.vae.config.scaling_factor | |
if do_classifier_free_guidance: | |
condition_pad = torch.ones_like(condition) * -1 | |
condition = torch.cat([condition_pad, condition]) | |
return condition | |
def images2latents(self, images, dtype): | |
""" | |
Convert RGB image to VAE latents | |
""" | |
device = self._execution_device | |
if isinstance(images, torch.Tensor): | |
# suppose input is [-1, 1] | |
images = images.to(dtype) | |
if images.ndim == 3: | |
images = images.unsqueeze(0) | |
elif isinstance(images, np.ndarray): | |
# suppose input is [0, 255] | |
images = torch.from_numpy(images).float().to(dtype) / 127.5 - 1 | |
images = rearrange(images, "h w c -> c h w").to(device)[None, :] | |
latents = self.vae.encode(images)['latent_dist'].mean * self.vae.config.scaling_factor | |
return latents | |
def images2latents_new(self, images, dtype): | |
""" | |
Convert RGB image to VAE latents | |
""" | |
device = self._execution_device | |
if isinstance(images, torch.Tensor): | |
# suppose input is [-1, 1] | |
images = images.to(dtype) | |
if images.ndim == 3: | |
images = images.unsqueeze(0) | |
elif isinstance(images, np.ndarray): | |
# suppose input is [0, 255] | |
images = torch.from_numpy(images).float().to(dtype) / 255.0 | |
images = rearrange(images, "h w c -> c h w").to(device)[None, :] | |
latents = self.vae.encode(images)['latent_dist'].mean * self.vae.config.scaling_factor | |
return latents | |
def encode_single_image_latents(self, images, mask, dtype): | |
device = self._execution_device | |
images = torch.from_numpy(images).float().to(dtype) / 127.5 - 1 | |
images = rearrange(images, "h w c -> c h w").to(device) | |
latents = self.vae.encode(images[None, :])['latent_dist'].mean * 0.18215 | |
images = images.unsqueeze(0) | |
mask = torch.from_numpy(mask).float().to(dtype).to(device) / 255.0 | |
if mask.ndim == 2: | |
mask = mask[None, None, :] | |
elif mask.ndim == 3: | |
mask = mask[:, None, :, :] | |
mask = F.interpolate(mask, size=latents.shape[-2:], mode='nearest') | |
return latents, images, mask | |
def __call__( | |
self, | |
prompt: Union[str, List[str]], | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 7.5, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "np", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: Optional[int] = 1, | |
controlnet_condition: list = None, | |
controlnet_conditioning_scale: Optional[float] = 1.0, | |
init_latents: Optional[torch.FloatTensor] = None, | |
num_actual_inference_steps: Optional[int] = None, | |
reference_encoder=None, | |
ref_image=None, | |
t2i=False, | |
style_fidelity=1.0, | |
prompt_img = None, | |
poses = None, | |
**kwargs, | |
): | |
controlnet = self.controlnet | |
# Default height and width to unet | |
height = height or self.unet.config.sample_size * self.vae_scale_factor | |
width = width or self.unet.config.sample_size * self.vae_scale_factor | |
# Check inputs. Raise error if not correct | |
self.check_inputs(prompt, height, width, callback_steps) | |
# Define call parameters | |
# batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
batch_size = 1 | |
if latents is not None: | |
batch_size = latents.shape[0] | |
if isinstance(prompt, list): | |
batch_size = len(prompt) | |
device = self._execution_device | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# Encode input prompt | |
if not isinstance(prompt, torch.Tensor): | |
prompt = prompt if isinstance(prompt, list) else [prompt] * batch_size | |
if negative_prompt is not None: | |
negative_prompt = negative_prompt if isinstance(negative_prompt, list) else [negative_prompt] * batch_size | |
text_embeddings = self._encode_prompt( | |
prompt, device, do_classifier_free_guidance, negative_prompt | |
) | |
text_embeddings = torch.cat([text_embeddings]) | |
reference_control_writer = ReferenceAttentionControl(reference_encoder, do_classifier_free_guidance=True, | |
style_fidelity=style_fidelity, | |
mode='write', fusion_blocks='full') | |
reference_control_reader = ReferenceAttentionControl(self.unet, do_classifier_free_guidance=True, mode='read', | |
style_fidelity=style_fidelity, | |
fusion_blocks='full') | |
is_dist_initialized = kwargs.get("dist", False) | |
rank = kwargs.get("rank", 0) | |
# Prepare control_img | |
control = self.prepare_condition( | |
condition=controlnet_condition, | |
device=device, | |
dtype=controlnet.dtype, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
) | |
# for b in range(control.size(0)): | |
# max_value = torch.max(control[b]) | |
# min_value = torch.min(control[b]) | |
# control[b] = (control[b] - min_value) / (max_value - min_value) | |
# Prepare timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
num_channels_latents = self.unet.in_channels | |
latents = self.prepare_latents( | |
batch_size, | |
num_channels_latents, | |
height, | |
width, | |
text_embeddings.dtype, | |
device, | |
generator, | |
latents, | |
) | |
if isinstance(latents, tuple): | |
latents, noise = latents | |
latents_dtype = latents.dtype | |
# Prepare extra step kwargs. | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# For img2img setting | |
if num_actual_inference_steps is None: | |
num_actual_inference_steps = num_inference_steps | |
if isinstance(ref_image, str): | |
ref_image_latents = self.images2latents(np.array(Image.open(ref_image).resize((width, height))), | |
latents_dtype).cuda() | |
elif isinstance(ref_image, np.ndarray): | |
ref_image_latents = self.images2latents(ref_image, latents_dtype).cuda() | |
elif isinstance(ref_image, torch.Tensor): | |
ref_image_latents = self.images2latents(ref_image, latents_dtype).cuda() | |
ref_padding_latents = torch.ones_like(ref_image_latents) * -1 | |
ref_image_latents = torch.cat([ref_padding_latents, ref_image_latents]) if do_classifier_free_guidance else ref_image_latents | |
prompt_embeds = self._encode_image_with_pose(prompt_img, poses, device, 1, do_classifier_free_guidance) | |
# Denoising loop | |
for i, t in tqdm(enumerate(timesteps), total=len(timesteps), disable=(rank != 0)): | |
if num_actual_inference_steps is not None and i < num_inference_steps - num_actual_inference_steps: | |
continue | |
# writer | |
ref_latents_input = ref_image_latents | |
reference_encoder( | |
ref_latents_input, | |
t, | |
encoder_hidden_states=text_embeddings, | |
return_dict=False, | |
) | |
reference_control_reader.update(reference_control_writer) | |
# prepare latents | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
if t2i: | |
pass | |
else: | |
# controlnet | |
down_block_res_samples, mid_block_res_sample = self.controlnet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
controlnet_cond=control, | |
return_dict=False, | |
) | |
down_block_res_samples = [sample * controlnet_conditioning_scale for sample in down_block_res_samples] | |
mid_block_res_sample = mid_block_res_sample * controlnet_conditioning_scale | |
# predict the noise residual | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=text_embeddings, | |
down_block_additional_residuals=down_block_res_samples, | |
mid_block_additional_residual=mid_block_res_sample, | |
return_dict=False, | |
)[0] | |
# clean the reader | |
reference_control_reader.clear() | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
if is_dist_initialized: | |
dist.broadcast(latents, 0) | |
dist.barrier() | |
reference_control_writer.clear() | |
samples = self.decode_latents(latents) | |
if is_dist_initialized: | |
dist.barrier() | |
# Convert to tensor | |
if output_type == "tensor": | |
samples = torch.from_numpy(samples) | |
if not return_dict: | |
return samples | |
return PipelineOutput(samples=samples) | |
class Hair3dPipeline_hair_encoder(DiffusionPipeline): | |
_optional_components = [] | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
unet: UNet2DConditionModel, | |
# controlnet: ControlNetModel, | |
# cc_projection: CCProjection, | |
image_encoder: CLIPVisionModelWithProjection, | |
feature_extractor: CLIPFeatureExtractor, | |
scheduler: Union[ | |
DDIMScheduler, | |
PNDMScheduler, | |
LMSDiscreteScheduler, | |
EulerDiscreteScheduler, | |
EulerAncestralDiscreteScheduler, | |
DPMSolverMultistepScheduler, | |
], | |
): | |
super().__init__() | |
self.register_modules( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
# controlnet=controlnet, | |
scheduler=scheduler, | |
image_encoder=image_encoder, | |
feature_extractor=feature_extractor, | |
# cc_projection=cc_projection, | |
) | |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
def enable_vae_slicing(self): | |
self.vae.enable_slicing() | |
def disable_vae_slicing(self): | |
self.vae.disable_slicing() | |
def enable_sequential_cpu_offload(self, gpu_id=0): | |
if is_accelerate_available(): | |
from accelerate import cpu_offload | |
else: | |
raise ImportError("Please install accelerate via `pip install accelerate`") | |
device = torch.device(f"cuda:{gpu_id}") | |
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]: | |
if cpu_offloaded_model is not None: | |
cpu_offload(cpu_offloaded_model, device) | |
def _execution_device(self): | |
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"): | |
return self.device | |
for module in self.unet.modules(): | |
if ( | |
hasattr(module, "_hf_hook") | |
and hasattr(module._hf_hook, "execution_device") | |
and module._hf_hook.execution_device is not None | |
): | |
return torch.device(module._hf_hook.execution_device) | |
return self.device | |
def CLIP_preprocess(self, x): | |
dtype = x.dtype | |
# following openai's implementation | |
# TODO HF OpenAI CLIP preprocessing issue https://github.com/huggingface/transformers/issues/22505#issuecomment-1650170741 | |
# follow openai preprocessing to keep exact same, input tensor [-1, 1], otherwise the preprocessing will be different, https://github.com/huggingface/transformers/pull/22608 | |
if isinstance(x, torch.Tensor): | |
if x.min() < -1.0 or x.max() > 1.0: | |
raise ValueError("Expected input tensor to have values in the range [-1, 1]") | |
x = kornia.geometry.resize(x.to(torch.float32), (224, 224), interpolation='bicubic', align_corners=True, antialias=False).to(dtype=dtype) | |
x = (x + 1.) / 2. | |
# renormalize according to clip | |
x = kornia.enhance.normalize(x, torch.Tensor([0.48145466, 0.4578275, 0.40821073]), | |
torch.Tensor([0.26862954, 0.26130258, 0.27577711])) | |
return x | |
# from image_variation | |
def _encode_image(self, image, device, num_images_per_prompt, do_classifier_free_guidance): | |
dtype = next(self.image_encoder.parameters()).dtype | |
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): | |
raise ValueError( | |
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" | |
) | |
if isinstance(image, torch.Tensor): | |
# Batch single image | |
if image.ndim == 3: | |
assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)" | |
image = image.unsqueeze(0) | |
assert image.ndim == 4, "Image must have 4 dimensions" | |
# Check image is in [-1, 1] | |
if image.min() < -1 or image.max() > 1: | |
raise ValueError("Image should be in [-1, 1] range") | |
else: | |
# preprocess image | |
if isinstance(image, (PIL.Image.Image, np.ndarray)): | |
image = [image] | |
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image): | |
image = [np.array(i.convert("RGB"))[None, :] for i in image] | |
image = np.concatenate(image, axis=0) | |
elif isinstance(image, list) and isinstance(image[0], np.ndarray): | |
image = np.concatenate([i[None, :] for i in image], axis=0) | |
image = image.transpose(0, 3, 1, 2) | |
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 | |
image = image.to(device=device, dtype=dtype) | |
image = self.CLIP_preprocess(image) | |
# if not isinstance(image, torch.Tensor): | |
# # 0-255 | |
# print("Warning: image is processed by hf's preprocess, which is different from openai original's.") | |
# image = self.feature_extractor(images=image, return_tensors="pt").pixel_values | |
image_embeddings = self.image_encoder(image).image_embeds.to(dtype=dtype) | |
image_embeddings = image_embeddings.unsqueeze(1) | |
# duplicate image embeddings for each generation per prompt, using mps friendly method | |
bs_embed, seq_len, _ = image_embeddings.shape | |
image_embeddings = image_embeddings.repeat(1, num_images_per_prompt, 1) | |
image_embeddings = image_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
if do_classifier_free_guidance: | |
negative_prompt_embeds = torch.zeros_like(image_embeddings) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings]) | |
return image_embeddings | |
def _encode_pose(self, pose, device, num_images_per_prompt, do_classifier_free_guidance): | |
dtype = next(self.unet.parameters()).dtype | |
if isinstance(pose, torch.Tensor): | |
pose_embeddings = pose.unsqueeze(0).to(device=device, dtype=dtype) | |
pose_embeddings = pose_embeddings.unsqueeze(0).to(device=device, dtype=dtype) | |
else: | |
if isinstance(pose[0], list): | |
pose = torch.Tensor(pose) | |
else: | |
pose = torch.Tensor([pose]) | |
x, y, z = pose[:,0].unsqueeze(1), pose[:,1].unsqueeze(1), pose[:,2].unsqueeze(1) | |
pose_embeddings = torch.cat([torch.deg2rad(x), | |
torch.sin(torch.deg2rad(y)), | |
torch.cos(torch.deg2rad(y)), | |
z], dim=-1).unsqueeze(1).to(device=device, dtype=dtype) # B, 1, 4 | |
# duplicate pose embeddings for each generation per prompt, using mps friendly method | |
bs_embed, seq_len, _ = pose_embeddings.shape | |
pose_embeddings = pose_embeddings.repeat(1, num_images_per_prompt, 1) | |
pose_embeddings = pose_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
if do_classifier_free_guidance: | |
negative_prompt_embeds = torch.zeros_like(pose_embeddings) | |
pose_embeddings = torch.cat([negative_prompt_embeds, pose_embeddings]) | |
return pose_embeddings | |
def _encode_image_with_pose(self, image, pose, device, num_images_per_prompt, do_classifier_free_guidance): | |
img_prompt_embeds = self._encode_image(image, device, num_images_per_prompt, False) | |
pose_prompt_embeds = self._encode_pose(pose, device, num_images_per_prompt, False) | |
prompt_embeds = torch.cat([img_prompt_embeds, pose_prompt_embeds], dim=-1) | |
prompt_embeds = self.cc_projection(prompt_embeds) | |
# follow 0123, add negative prompt, after projection | |
if do_classifier_free_guidance: | |
negative_prompt = torch.zeros_like(prompt_embeds) | |
prompt_embeds = torch.cat([negative_prompt, prompt_embeds]) | |
return prompt_embeds | |
def _encode_prompt(self, prompt, device, do_classifier_free_guidance, negative_prompt): | |
if isinstance(prompt, torch.Tensor): | |
batch_size = prompt.shape[0] | |
text_input_ids = prompt | |
else: | |
batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, | |
untruncated_ids): | |
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1: -1]) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = text_inputs.attention_mask.to(device) | |
else: | |
attention_mask = None | |
text_embeddings = self.text_encoder( | |
text_input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
text_embeddings = text_embeddings[0] | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
bs_embed, seq_len, _ = text_embeddings.shape | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance: | |
uncond_tokens: List[str] | |
if negative_prompt is None: | |
uncond_tokens = [""] * batch_size | |
elif type(prompt) is not type(negative_prompt): | |
raise TypeError( | |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}." | |
) | |
elif isinstance(negative_prompt, str): | |
uncond_tokens = [negative_prompt] | |
elif batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
else: | |
uncond_tokens = negative_prompt | |
max_length = text_input_ids.shape[-1] | |
uncond_input = self.tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = uncond_input.attention_mask.to(device) | |
else: | |
attention_mask = None | |
uncond_embeddings = self.text_encoder( | |
uncond_input.input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
uncond_embeddings = uncond_embeddings[0] | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = uncond_embeddings.shape[1] | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | |
return text_embeddings | |
def decode_latents(self, latents): | |
latents = 1 / 0.18215 * latents | |
image = self.vae.decode(latents).sample | |
print("image", torch.max(image), torch.min(image)) | |
image = (image / 2 + 0.5).clamp(0, 1).permute(0, 2, 3, 1) | |
image = image.cpu().squeeze(0).float().numpy() | |
return image | |
def prepare_extra_step_kwargs(self, generator, eta): | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
def check_inputs(self, prompt, height, width, callback_steps): | |
if not isinstance(prompt, str) and not isinstance(prompt, list) and not isinstance(prompt, torch.Tensor): | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if height % 8 != 0 or width % 8 != 0: | |
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
if (callback_steps is None) or ( | |
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
): | |
raise ValueError( | |
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
f" {type(callback_steps)}." | |
) | |
def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): | |
if isinstance(generator, list): | |
image_latents = [ | |
self.vae.encode(image[i: i + 1]).latent_dist.sample(generator=generator[i]) | |
for i in range(image.shape[0]) | |
] | |
image_latents = torch.cat(image_latents, dim=0) | |
else: | |
image_latents = self.vae.encode(image).latent_dist.sample(generator=generator) | |
image_latents = self.vae.config.scaling_factor * image_latents | |
return image_latents | |
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None, | |
clip_length=16): | |
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if latents is None: | |
rand_device = "cpu" if device.type == "mps" else device | |
if isinstance(generator, list): | |
latents = [ | |
torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype) | |
for i in range(batch_size) | |
] | |
latents = torch.cat(latents, dim=0).to(device) | |
else: | |
latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device) | |
else: | |
if latents.shape != shape: | |
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") | |
latents = latents.to(device) | |
# scale the initial noise by the standard deviation required by the scheduler | |
noise = latents.clone() | |
latents = latents * self.scheduler.init_noise_sigma | |
return latents, noise | |
def prepare_condition(self, condition, device, dtype, do_classifier_free_guidance): | |
if isinstance(condition, torch.Tensor): | |
# suppose input is [-1, 1] | |
condition = condition | |
elif isinstance(condition, np.ndarray): | |
# suppose input is [0, 255] | |
condition = self.images2latents(condition, dtype).cuda() | |
if do_classifier_free_guidance: | |
condition_pad = torch.ones_like(condition) * -1 | |
condition = torch.cat([condition_pad, condition]) | |
return condition | |
def images2latents(self, images, dtype): | |
""" | |
Convert RGB image to VAE latents | |
""" | |
device = self._execution_device | |
if isinstance(images, torch.Tensor): | |
# suppose input is [-1, 1] | |
images = images.to(dtype) | |
if images.ndim == 3: | |
images = images.unsqueeze(0) | |
elif isinstance(images, np.ndarray): | |
# suppose input is [0, 255] | |
images = torch.from_numpy(images).float().to(dtype) / 127.5 - 1 | |
images = rearrange(images, "h w c -> c h w").to(device)[None, :] | |
latents = self.vae.encode(images)['latent_dist'].mean * self.vae.config.scaling_factor | |
return latents | |
def images2latents_new(self, images, dtype): | |
""" | |
Convert RGB image to VAE latents | |
""" | |
device = self._execution_device | |
if isinstance(images, torch.Tensor): | |
# suppose input is [-1, 1] | |
images = images.to(dtype) | |
if images.ndim == 3: | |
images = images.unsqueeze(0) | |
elif isinstance(images, np.ndarray): | |
# suppose input is [0, 255] | |
images = torch.from_numpy(images).float().to(dtype) / 255.0 | |
images = rearrange(images, "h w c -> c h w").to(device)[None, :] | |
latents = self.vae.encode(images)['latent_dist'].mean * self.vae.config.scaling_factor | |
return latents | |
def encode_single_image_latents(self, images, mask, dtype): | |
device = self._execution_device | |
images = torch.from_numpy(images).float().to(dtype) / 127.5 - 1 | |
images = rearrange(images, "h w c -> c h w").to(device) | |
latents = self.vae.encode(images[None, :])['latent_dist'].mean * 0.18215 | |
images = images.unsqueeze(0) | |
mask = torch.from_numpy(mask).float().to(dtype).to(device) / 255.0 | |
if mask.ndim == 2: | |
mask = mask[None, None, :] | |
elif mask.ndim == 3: | |
mask = mask[:, None, :, :] | |
mask = F.interpolate(mask, size=latents.shape[-2:], mode='nearest') | |
return latents, images, mask | |
def __call__( | |
self, | |
prompt: Union[str, List[str]], | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 7.5, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "np", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: Optional[int] = 1, | |
controlnet_condition: list = None, | |
controlnet_conditioning_scale: Optional[float] = 1.0, | |
init_latents: Optional[torch.FloatTensor] = None, | |
num_actual_inference_steps: Optional[int] = None, | |
reference_encoder=None, | |
ref_image=None, | |
t2i=False, | |
style_fidelity=1.0, | |
prompt_img = None, | |
poses = None, | |
**kwargs, | |
): | |
controlnet = self.controlnet | |
# Default height and width to unet | |
height = height or self.unet.config.sample_size * self.vae_scale_factor | |
width = width or self.unet.config.sample_size * self.vae_scale_factor | |
# Check inputs. Raise error if not correct | |
self.check_inputs(prompt, height, width, callback_steps) | |
# Define call parameters | |
# batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
batch_size = 1 | |
if latents is not None: | |
batch_size = latents.shape[0] | |
if isinstance(prompt, list): | |
batch_size = len(prompt) | |
device = self._execution_device | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# Encode input prompt | |
if not isinstance(prompt, torch.Tensor): | |
prompt = prompt if isinstance(prompt, list) else [prompt] * batch_size | |
if negative_prompt is not None: | |
negative_prompt = negative_prompt if isinstance(negative_prompt, list) else [negative_prompt] * batch_size | |
text_embeddings = self._encode_prompt( | |
prompt, device, do_classifier_free_guidance, negative_prompt | |
) | |
text_embeddings = torch.cat([text_embeddings]) | |
reference_control_writer = ReferenceAttentionControl(reference_encoder, do_classifier_free_guidance=True, | |
style_fidelity=style_fidelity, | |
mode='write', fusion_blocks='full') | |
reference_control_reader = ReferenceAttentionControl(self.unet, do_classifier_free_guidance=True, mode='read', | |
style_fidelity=style_fidelity, | |
fusion_blocks='full') | |
is_dist_initialized = kwargs.get("dist", False) | |
rank = kwargs.get("rank", 0) | |
# Prepare control_img | |
control = self.prepare_condition( | |
condition=controlnet_condition, | |
device=device, | |
dtype=controlnet.dtype, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
) | |
# for b in range(control.size(0)): | |
# max_value = torch.max(control[b]) | |
# min_value = torch.min(control[b]) | |
# control[b] = (control[b] - min_value) / (max_value - min_value) | |
# Prepare timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
num_channels_latents = self.unet.in_channels | |
latents = self.prepare_latents( | |
batch_size, | |
num_channels_latents, | |
height, | |
width, | |
text_embeddings.dtype, | |
device, | |
generator, | |
latents, | |
) | |
if isinstance(latents, tuple): | |
latents, noise = latents | |
latents_dtype = latents.dtype | |
# Prepare extra step kwargs. | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# For img2img setting | |
if num_actual_inference_steps is None: | |
num_actual_inference_steps = num_inference_steps | |
if isinstance(ref_image, str): | |
ref_image_latents = self.images2latents(np.array(Image.open(ref_image).resize((width, height))), | |
latents_dtype).cuda() | |
elif isinstance(ref_image, np.ndarray): | |
ref_image_latents = self.images2latents(ref_image, latents_dtype).cuda() | |
elif isinstance(ref_image, torch.Tensor): | |
ref_image_latents = self.images2latents(ref_image, latents_dtype).cuda() | |
ref_padding_latents = torch.ones_like(ref_image_latents) * -1 | |
ref_image_latents = torch.cat([ref_padding_latents, ref_image_latents]) if do_classifier_free_guidance else ref_image_latents | |
# prompt_embeds = self._encode_image_with_pose(prompt_img, poses, device, 1, do_classifier_free_guidance) | |
# Denoising loop | |
for i, t in tqdm(enumerate(timesteps), total=len(timesteps), disable=(rank != 0)): | |
if num_actual_inference_steps is not None and i < num_inference_steps - num_actual_inference_steps: | |
continue | |
# writer | |
ref_latents_input = ref_image_latents | |
reference_encoder( | |
ref_latents_input, | |
t, | |
# encoder_hidden_states=prompt_embeds, | |
encoder_hidden_states=text_embeddings, | |
return_dict=False, | |
) | |
reference_control_reader.update(reference_control_writer) | |
# prepare latents | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
if t2i: | |
pass | |
else: | |
# controlnet | |
down_block_res_samples, mid_block_res_sample = self.controlnet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=text_embeddings, | |
controlnet_cond=control, | |
return_dict=False, | |
) | |
down_block_res_samples = [sample * controlnet_conditioning_scale for sample in down_block_res_samples] | |
mid_block_res_sample = mid_block_res_sample * controlnet_conditioning_scale | |
# predict the noise residual | |
#latent_model_input = torch.cat([latent_model_input, control], dim=1) | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=text_embeddings, | |
down_block_additional_residuals=down_block_res_samples, | |
mid_block_additional_residual=mid_block_res_sample, | |
return_dict=False, | |
)[0] | |
# clean the reader | |
reference_control_reader.clear() | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
if is_dist_initialized: | |
dist.broadcast(latents, 0) | |
dist.barrier() | |
reference_control_writer.clear() | |
samples = self.decode_latents(latents) | |
if is_dist_initialized: | |
dist.barrier() | |
# Convert to tensor | |
if output_type == "tensor": | |
samples = torch.from_numpy(samples) | |
if not return_dict: | |
return samples | |
return PipelineOutput(samples=samples) | |
class Hair3dPipeline_controlnet_sv3d(DiffusionPipeline): | |
_optional_components = [] | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
unet: UNet2DConditionModel, | |
controlnet: ControlNetModel, | |
cc_projection: CCProjection, | |
image_encoder: CLIPVisionModelWithProjection, | |
feature_extractor: CLIPFeatureExtractor, | |
scheduler: Union[ | |
DDIMScheduler, | |
PNDMScheduler, | |
LMSDiscreteScheduler, | |
EulerDiscreteScheduler, | |
EulerAncestralDiscreteScheduler, | |
DPMSolverMultistepScheduler, | |
], | |
): | |
super().__init__() | |
self.register_modules( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
controlnet=controlnet, | |
scheduler=scheduler, | |
image_encoder=image_encoder, | |
feature_extractor=feature_extractor, | |
cc_projection=cc_projection, | |
) | |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
def enable_vae_slicing(self): | |
self.vae.enable_slicing() | |
def disable_vae_slicing(self): | |
self.vae.disable_slicing() | |
def enable_sequential_cpu_offload(self, gpu_id=0): | |
if is_accelerate_available(): | |
from accelerate import cpu_offload | |
else: | |
raise ImportError("Please install accelerate via `pip install accelerate`") | |
device = torch.device(f"cuda:{gpu_id}") | |
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]: | |
if cpu_offloaded_model is not None: | |
cpu_offload(cpu_offloaded_model, device) | |
def _execution_device(self): | |
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"): | |
return self.device | |
for module in self.unet.modules(): | |
if ( | |
hasattr(module, "_hf_hook") | |
and hasattr(module._hf_hook, "execution_device") | |
and module._hf_hook.execution_device is not None | |
): | |
return torch.device(module._hf_hook.execution_device) | |
return self.device | |
def _get_add_time_ids( | |
self, | |
noise_aug_strength: torch.tensor, | |
polars_rad: torch.tensor, | |
azimuths_rad: torch.tensor, | |
#dtype: torch.dtype, | |
# batch_size: int, | |
# num_videos_per_prompt: int, | |
do_classifier_free_guidance: bool, | |
): | |
cond_aug = noise_aug_strength.repeat(polars_rad.shape[0], 1) | |
cond_aug = cond_aug.to(polars_rad.device) | |
# polars_rad = torch.tensor(polars_rad, dtype=dtype) | |
# azimuths_rad = torch.tensor(azimuths_rad, dtype=dtype) | |
if do_classifier_free_guidance: | |
cond_aug = torch.cat([cond_aug, cond_aug]) | |
polars_rad = torch.cat([polars_rad, polars_rad]) | |
azimuths_rad = torch.cat([azimuths_rad, azimuths_rad]) | |
add_time_ids = [cond_aug, polars_rad, azimuths_rad] | |
return add_time_ids | |
def CLIP_preprocess(self, x): | |
dtype = x.dtype | |
# following openai's implementation | |
# TODO HF OpenAI CLIP preprocessing issue https://github.com/huggingface/transformers/issues/22505#issuecomment-1650170741 | |
# follow openai preprocessing to keep exact same, input tensor [-1, 1], otherwise the preprocessing will be different, https://github.com/huggingface/transformers/pull/22608 | |
if isinstance(x, torch.Tensor): | |
if x.min() < -1.0 or x.max() > 1.0: | |
raise ValueError("Expected input tensor to have values in the range [-1, 1]") | |
x = kornia.geometry.resize(x.to(torch.float32), (224, 224), interpolation='bicubic', align_corners=True, antialias=False).to(dtype=dtype) | |
x = (x + 1.) / 2. | |
# renormalize according to clip | |
x = kornia.enhance.normalize(x, torch.Tensor([0.48145466, 0.4578275, 0.40821073]), | |
torch.Tensor([0.26862954, 0.26130258, 0.27577711])) | |
return x | |
# from image_variation | |
def _encode_image(self, image, device, num_images_per_prompt, do_classifier_free_guidance): | |
dtype = next(self.image_encoder.parameters()).dtype | |
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): | |
raise ValueError( | |
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" | |
) | |
if isinstance(image, torch.Tensor): | |
# Batch single image | |
if image.ndim == 3: | |
assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)" | |
image = image.unsqueeze(0) | |
assert image.ndim == 4, "Image must have 4 dimensions" | |
# Check image is in [-1, 1] | |
if image.min() < -1 or image.max() > 1: | |
raise ValueError("Image should be in [-1, 1] range") | |
else: | |
# preprocess image | |
if isinstance(image, (PIL.Image.Image, np.ndarray)): | |
image = [image] | |
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image): | |
image = [np.array(i.convert("RGB"))[None, :] for i in image] | |
image = np.concatenate(image, axis=0) | |
elif isinstance(image, list) and isinstance(image[0], np.ndarray): | |
image = np.concatenate([i[None, :] for i in image], axis=0) | |
image = image.transpose(0, 3, 1, 2) | |
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 | |
image = image.to(device=device, dtype=dtype) | |
image = self.CLIP_preprocess(image) | |
# if not isinstance(image, torch.Tensor): | |
# # 0-255 | |
# print("Warning: image is processed by hf's preprocess, which is different from openai original's.") | |
# image = self.feature_extractor(images=image, return_tensors="pt").pixel_values | |
image_embeddings = self.image_encoder(image).image_embeds.to(dtype=dtype) | |
image_embeddings = image_embeddings.unsqueeze(1) | |
# duplicate image embeddings for each generation per prompt, using mps friendly method | |
bs_embed, seq_len, _ = image_embeddings.shape | |
image_embeddings = image_embeddings.repeat(1, num_images_per_prompt, 1) | |
image_embeddings = image_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
if do_classifier_free_guidance: | |
negative_prompt_embeds = torch.zeros_like(image_embeddings) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings]) | |
return image_embeddings | |
def _encode_pose(self, pose, device, num_images_per_prompt, do_classifier_free_guidance): | |
dtype = next(self.unet.parameters()).dtype | |
if isinstance(pose, torch.Tensor): | |
pose_embeddings = pose.unsqueeze(0).to(device=device, dtype=dtype) | |
#pose_embeddings = pose_embeddings.unsqueeze(0).to(device=device, dtype=dtype) | |
else: | |
if isinstance(pose[0], list): | |
pose = torch.Tensor(pose) | |
else: | |
pose = torch.Tensor([pose]) | |
x, y, z = pose[:,0].unsqueeze(1), pose[:,1].unsqueeze(1), pose[:,2].unsqueeze(1) | |
pose_embeddings = torch.cat([torch.deg2rad(x), | |
torch.sin(torch.deg2rad(y)), | |
torch.cos(torch.deg2rad(y)), | |
z], dim=-1).unsqueeze(1).to(device=device, dtype=dtype) # B, 1, 4 | |
# duplicate pose embeddings for each generation per prompt, using mps friendly method | |
bs_embed, seq_len, _ = pose_embeddings.shape | |
# pose_embeddings = pose_embeddings.repeat(1, num_images_per_prompt, 1) | |
# pose_embeddings = pose_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
if do_classifier_free_guidance: | |
negative_prompt_embeds = torch.zeros_like(pose_embeddings) | |
pose_embeddings = torch.cat([negative_prompt_embeds, pose_embeddings]) | |
return pose_embeddings | |
def _encode_image_with_pose(self, image, pose, device, num_images_per_prompt, do_classifier_free_guidance): | |
img_prompt_embeds = self._encode_image(image, device, num_images_per_prompt, False) | |
pose_prompt_embeds = self._encode_pose(pose, device, num_images_per_prompt, False) | |
prompt_embeds = torch.cat([img_prompt_embeds, pose_prompt_embeds], dim=-1) | |
prompt_embeds = self.cc_projection(prompt_embeds) | |
prompt_embeds = img_prompt_embeds | |
# follow 0123, add negative prompt, after projection | |
if do_classifier_free_guidance: | |
negative_prompt = torch.zeros_like(prompt_embeds) | |
prompt_embeds = torch.cat([negative_prompt, prompt_embeds]) | |
return prompt_embeds | |
def _encode_prompt(self, prompt, device, do_classifier_free_guidance, negative_prompt): | |
if isinstance(prompt, torch.Tensor): | |
batch_size = prompt.shape[0] | |
text_input_ids = prompt | |
else: | |
batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, | |
untruncated_ids): | |
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1: -1]) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = text_inputs.attention_mask.to(device) | |
else: | |
attention_mask = None | |
text_embeddings = self.text_encoder( | |
text_input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
text_embeddings = text_embeddings[0] | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
bs_embed, seq_len, _ = text_embeddings.shape | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance: | |
uncond_tokens: List[str] | |
if negative_prompt is None: | |
uncond_tokens = [""] * batch_size | |
elif type(prompt) is not type(negative_prompt): | |
raise TypeError( | |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}." | |
) | |
elif isinstance(negative_prompt, str): | |
uncond_tokens = [negative_prompt] | |
elif batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
else: | |
uncond_tokens = negative_prompt | |
max_length = text_input_ids.shape[-1] | |
uncond_input = self.tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = uncond_input.attention_mask.to(device) | |
else: | |
attention_mask = None | |
uncond_embeddings = self.text_encoder( | |
uncond_input.input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
uncond_embeddings = uncond_embeddings[0] | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = uncond_embeddings.shape[1] | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | |
return text_embeddings | |
def decode_latents(self, latents): | |
latents = 1 / 0.18215 * latents | |
image = self.vae.decode(latents).sample | |
print("image", torch.max(image), torch.min(image)) | |
image = (image / 2 + 0.5).clamp(0, 1).permute(0, 2, 3, 1) | |
image = image.cpu().squeeze(0).float().numpy() | |
return image | |
def prepare_extra_step_kwargs(self, generator, eta): | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
def check_inputs(self, prompt, height, width, callback_steps): | |
if not isinstance(prompt, str) and not isinstance(prompt, list) and not isinstance(prompt, torch.Tensor): | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if height % 8 != 0 or width % 8 != 0: | |
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
if (callback_steps is None) or ( | |
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
): | |
raise ValueError( | |
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
f" {type(callback_steps)}." | |
) | |
def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): | |
if isinstance(generator, list): | |
image_latents = [ | |
self.vae.encode(image[i: i + 1]).latent_dist.sample(generator=generator[i]) | |
for i in range(image.shape[0]) | |
] | |
image_latents = torch.cat(image_latents, dim=0) | |
else: | |
image_latents = self.vae.encode(image).latent_dist.sample(generator=generator) | |
image_latents = self.vae.config.scaling_factor * image_latents | |
return image_latents | |
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None, | |
clip_length=16): | |
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if latents is None: | |
rand_device = "cpu" if device.type == "mps" else device | |
if isinstance(generator, list): | |
latents = [ | |
torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype) | |
for i in range(batch_size) | |
] | |
latents = torch.cat(latents, dim=0).to(device) | |
else: | |
latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device) | |
else: | |
if latents.shape != shape: | |
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") | |
latents = latents.to(device) | |
# scale the initial noise by the standard deviation required by the scheduler | |
noise = latents.clone() | |
latents = latents * self.scheduler.init_noise_sigma | |
return latents, noise | |
def prepare_condition(self, condition, device, dtype, do_classifier_free_guidance): | |
if isinstance(condition, torch.Tensor): | |
# suppose input is [-1, 1] | |
condition = condition | |
elif isinstance(condition, np.ndarray): | |
# suppose input is [0, 255] | |
condition = self.images2latents(condition, dtype).cuda() | |
if do_classifier_free_guidance: | |
condition_pad = torch.ones_like(condition) * -1 | |
condition = torch.cat([condition_pad, condition]) | |
return condition | |
def images2latents(self, images, dtype): | |
""" | |
Convert RGB image to VAE latents | |
""" | |
device = self._execution_device | |
if isinstance(images, torch.Tensor): | |
# suppose input is [-1, 1] | |
images = images.to(dtype) | |
if images.ndim == 3: | |
images = images.unsqueeze(0) | |
elif isinstance(images, np.ndarray): | |
# suppose input is [0, 255] | |
images = torch.from_numpy(images).float().to(dtype) / 127.5 - 1 | |
images = rearrange(images, "h w c -> c h w").to(device)[None, :] | |
latents = self.vae.encode(images)['latent_dist'].mean * self.vae.config.scaling_factor | |
return latents | |
def images2latents_new(self, images, dtype): | |
""" | |
Convert RGB image to VAE latents | |
""" | |
device = self._execution_device | |
if isinstance(images, torch.Tensor): | |
# suppose input is [-1, 1] | |
images = images.to(dtype) | |
if images.ndim == 3: | |
images = images.unsqueeze(0) | |
elif isinstance(images, np.ndarray): | |
# suppose input is [0, 255] | |
images = torch.from_numpy(images).float().to(dtype) / 255.0 | |
images = rearrange(images, "h w c -> c h w").to(device)[None, :] | |
latents = self.vae.encode(images)['latent_dist'].mean * self.vae.config.scaling_factor | |
return latents | |
def encode_single_image_latents(self, images, mask, dtype): | |
device = self._execution_device | |
images = torch.from_numpy(images).float().to(dtype) / 127.5 - 1 | |
images = rearrange(images, "h w c -> c h w").to(device) | |
latents = self.vae.encode(images[None, :])['latent_dist'].mean * 0.18215 | |
images = images.unsqueeze(0) | |
mask = torch.from_numpy(mask).float().to(dtype).to(device) / 255.0 | |
if mask.ndim == 2: | |
mask = mask[None, None, :] | |
elif mask.ndim == 3: | |
mask = mask[:, None, :, :] | |
mask = F.interpolate(mask, size=latents.shape[-2:], mode='nearest') | |
return latents, images, mask | |
def __call__( | |
self, | |
prompt: Union[str, List[str]], | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 7.5, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "np", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: Optional[int] = 1, | |
controlnet_condition: list = None, | |
controlnet_conditioning_scale: Optional[float] = 1.0, | |
init_latents: Optional[torch.FloatTensor] = None, | |
num_actual_inference_steps: Optional[int] = None, | |
reference_encoder=None, | |
ref_image=None, | |
t2i=False, | |
style_fidelity=1.0, | |
prompt_img = None, | |
poses = None, | |
x = None, | |
y = None, | |
controlnet_ablation = False, | |
hair_encoder_add_xy = True, | |
controlnet_encoder_add_xy = True, | |
**kwargs, | |
): | |
controlnet = self.controlnet | |
# Default height and width to unet | |
height = height or self.unet.config.sample_size * self.vae_scale_factor | |
width = width or self.unet.config.sample_size * self.vae_scale_factor | |
# Check inputs. Raise error if not correct | |
self.check_inputs(prompt, height, width, callback_steps) | |
# Define call parameters | |
# batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
batch_size = 1 | |
if latents is not None: | |
batch_size = latents.shape[0] | |
if isinstance(prompt, list): | |
batch_size = len(prompt) | |
device = self._execution_device | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# Encode input prompt | |
if not isinstance(prompt, torch.Tensor): | |
prompt = prompt if isinstance(prompt, list) else [prompt] * batch_size | |
if negative_prompt is not None: | |
negative_prompt = negative_prompt if isinstance(negative_prompt, list) else [negative_prompt] * batch_size | |
text_embeddings = self._encode_prompt( | |
prompt, device, do_classifier_free_guidance, negative_prompt | |
) | |
text_embeddings = torch.cat([text_embeddings]) | |
reference_control_writer = ReferenceAttentionControl(reference_encoder, do_classifier_free_guidance=True, | |
style_fidelity=style_fidelity, | |
mode='write', fusion_blocks='full') | |
reference_control_reader = ReferenceAttentionControl(self.unet, do_classifier_free_guidance=True, mode='read', | |
style_fidelity=style_fidelity, | |
fusion_blocks='full') | |
is_dist_initialized = kwargs.get("dist", False) | |
rank = kwargs.get("rank", 0) | |
# Prepare control_img | |
if controlnet_ablation: | |
control = controlnet_condition | |
control = torch.from_numpy(control).float().to(controlnet.dtype) / 127.5 - 1 | |
control = rearrange(control, "h w c -> c h w").to(device)[None, :] | |
else: | |
control = self.prepare_condition( | |
condition=controlnet_condition, | |
device=device, | |
dtype=controlnet.dtype, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
) | |
# for b in range(control.size(0)): | |
# max_value = torch.max(control[b]) | |
# min_value = torch.min(control[b]) | |
# control[b] = (control[b] - min_value) / (max_value - min_value) | |
# Prepare timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
num_channels_latents = self.unet.in_channels | |
latents = self.prepare_latents( | |
batch_size, | |
num_channels_latents, | |
height, | |
width, | |
text_embeddings.dtype, | |
device, | |
generator, | |
latents, | |
) | |
if isinstance(latents, tuple): | |
latents, noise = latents | |
latents_dtype = latents.dtype | |
# Prepare extra step kwargs. | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# For img2img setting | |
if num_actual_inference_steps is None: | |
num_actual_inference_steps = num_inference_steps | |
if isinstance(ref_image, str): | |
ref_image_latents = self.images2latents(np.array(Image.open(ref_image).resize((width, height))), | |
latents_dtype).cuda() | |
elif isinstance(ref_image, np.ndarray): | |
ref_image_latents = self.images2latents(ref_image, latents_dtype).cuda() | |
elif isinstance(ref_image, torch.Tensor): | |
ref_image_latents = self.images2latents(ref_image, latents_dtype).cuda() | |
ref_padding_latents = torch.ones_like(ref_image_latents) * -1 | |
ref_image_latents = torch.cat([ref_padding_latents, ref_image_latents]) if do_classifier_free_guidance else ref_image_latents | |
prompt_embeds = self._encode_image_with_pose(prompt_img, poses, device, 1, do_classifier_free_guidance) | |
noise_aug_strength = 1e-5 | |
noise_aug_strength = torch.tensor(noise_aug_strength, dtype=torch.float32).unsqueeze(0) | |
noise_aug_strength = noise_aug_strength.to(device) | |
if (x is not None) and (y is not None): | |
x = x.to(device) | |
y = y.to(device) | |
add_time_ids = self._get_add_time_ids(noise_aug_strength, x, y, do_classifier_free_guidance) | |
else: | |
add_time_ids = None | |
# Denoising loop | |
for i, t in tqdm(enumerate(timesteps), total=len(timesteps), disable=(rank != 0)): | |
if num_actual_inference_steps is not None and i < num_inference_steps - num_actual_inference_steps: | |
continue | |
# writer | |
ref_latents_input = ref_image_latents | |
if hair_encoder_add_xy: | |
reference_encoder( | |
ref_latents_input, | |
t, | |
encoder_hidden_states=text_embeddings, | |
return_dict=False, | |
# add_time_ids = add_time_ids, | |
) | |
else: | |
reference_encoder( | |
ref_latents_input, | |
t, | |
encoder_hidden_states=text_embeddings, | |
return_dict=False, | |
add_time_ids = None, | |
) | |
# reference_control_reader.update(reference_control_writer) | |
# prepare latents | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
if t2i: | |
pass | |
else: | |
# controlnet | |
if controlnet_encoder_add_xy: | |
down_block_res_samples, mid_block_res_sample = self.controlnet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=text_embeddings, | |
controlnet_cond=control, | |
return_dict=False, | |
add_time_ids = add_time_ids, | |
) | |
else: | |
down_block_res_samples, mid_block_res_sample = self.controlnet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=text_embeddings, | |
controlnet_cond=control, | |
return_dict=False, | |
add_time_ids = None, | |
) | |
down_block_res_samples = [sample * controlnet_conditioning_scale for sample in down_block_res_samples] | |
mid_block_res_sample = mid_block_res_sample * controlnet_conditioning_scale | |
# predict the noise residual | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=text_embeddings, | |
down_block_additional_residuals=down_block_res_samples, | |
mid_block_additional_residual=mid_block_res_sample, | |
return_dict=False, | |
)[0] | |
# clean the reader | |
# reference_control_reader.clear() | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
if is_dist_initialized: | |
dist.broadcast(latents, 0) | |
dist.barrier() | |
# reference_control_writer.clear() | |
samples = self.decode_latents(latents) | |
if is_dist_initialized: | |
dist.barrier() | |
# Convert to tensor | |
if output_type == "tensor": | |
samples = torch.from_numpy(samples) | |
if not return_dict: | |
return samples | |
return PipelineOutput(samples=samples) | |
class Hair3dPipeline_controlnet_only_sv3d(DiffusionPipeline): | |
_optional_components = [] | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
unet: UNet2DConditionModel, | |
controlnet: ControlNetModel, | |
cc_projection: CCProjection, | |
image_encoder: CLIPVisionModelWithProjection, | |
feature_extractor: CLIPFeatureExtractor, | |
scheduler: Union[ | |
DDIMScheduler, | |
PNDMScheduler, | |
LMSDiscreteScheduler, | |
EulerDiscreteScheduler, | |
EulerAncestralDiscreteScheduler, | |
DPMSolverMultistepScheduler, | |
], | |
): | |
super().__init__() | |
self.register_modules( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
controlnet=controlnet, | |
scheduler=scheduler, | |
image_encoder=image_encoder, | |
feature_extractor=feature_extractor, | |
cc_projection=cc_projection, | |
) | |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
def enable_vae_slicing(self): | |
self.vae.enable_slicing() | |
def disable_vae_slicing(self): | |
self.vae.disable_slicing() | |
def enable_sequential_cpu_offload(self, gpu_id=0): | |
if is_accelerate_available(): | |
from accelerate import cpu_offload | |
else: | |
raise ImportError("Please install accelerate via `pip install accelerate`") | |
device = torch.device(f"cuda:{gpu_id}") | |
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]: | |
if cpu_offloaded_model is not None: | |
cpu_offload(cpu_offloaded_model, device) | |
def _execution_device(self): | |
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"): | |
return self.device | |
for module in self.unet.modules(): | |
if ( | |
hasattr(module, "_hf_hook") | |
and hasattr(module._hf_hook, "execution_device") | |
and module._hf_hook.execution_device is not None | |
): | |
return torch.device(module._hf_hook.execution_device) | |
return self.device | |
def _get_add_time_ids( | |
self, | |
noise_aug_strength: torch.tensor, | |
polars_rad: torch.tensor, | |
azimuths_rad: torch.tensor, | |
#dtype: torch.dtype, | |
# batch_size: int, | |
# num_videos_per_prompt: int, | |
do_classifier_free_guidance: bool, | |
): | |
cond_aug = noise_aug_strength.repeat(polars_rad.shape[0], 1) | |
cond_aug = cond_aug.to(polars_rad.device) | |
# polars_rad = torch.tensor(polars_rad, dtype=dtype) | |
# azimuths_rad = torch.tensor(azimuths_rad, dtype=dtype) | |
if do_classifier_free_guidance: | |
cond_aug = torch.cat([cond_aug, cond_aug]) | |
polars_rad = torch.cat([polars_rad, polars_rad]) | |
azimuths_rad = torch.cat([azimuths_rad, azimuths_rad]) | |
add_time_ids = [cond_aug, polars_rad, azimuths_rad] | |
return add_time_ids | |
def CLIP_preprocess(self, x): | |
dtype = x.dtype | |
# following openai's implementation | |
# TODO HF OpenAI CLIP preprocessing issue https://github.com/huggingface/transformers/issues/22505#issuecomment-1650170741 | |
# follow openai preprocessing to keep exact same, input tensor [-1, 1], otherwise the preprocessing will be different, https://github.com/huggingface/transformers/pull/22608 | |
if isinstance(x, torch.Tensor): | |
if x.min() < -1.0 or x.max() > 1.0: | |
raise ValueError("Expected input tensor to have values in the range [-1, 1]") | |
x = kornia.geometry.resize(x.to(torch.float32), (224, 224), interpolation='bicubic', align_corners=True, antialias=False).to(dtype=dtype) | |
x = (x + 1.) / 2. | |
# renormalize according to clip | |
x = kornia.enhance.normalize(x, torch.Tensor([0.48145466, 0.4578275, 0.40821073]), | |
torch.Tensor([0.26862954, 0.26130258, 0.27577711])) | |
return x | |
# from image_variation | |
def _encode_image(self, image, device, num_images_per_prompt, do_classifier_free_guidance): | |
dtype = next(self.image_encoder.parameters()).dtype | |
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): | |
raise ValueError( | |
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" | |
) | |
if isinstance(image, torch.Tensor): | |
# Batch single image | |
if image.ndim == 3: | |
assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)" | |
image = image.unsqueeze(0) | |
assert image.ndim == 4, "Image must have 4 dimensions" | |
# Check image is in [-1, 1] | |
if image.min() < -1 or image.max() > 1: | |
raise ValueError("Image should be in [-1, 1] range") | |
else: | |
# preprocess image | |
if isinstance(image, (PIL.Image.Image, np.ndarray)): | |
image = [image] | |
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image): | |
image = [np.array(i.convert("RGB"))[None, :] for i in image] | |
image = np.concatenate(image, axis=0) | |
elif isinstance(image, list) and isinstance(image[0], np.ndarray): | |
image = np.concatenate([i[None, :] for i in image], axis=0) | |
image = image.transpose(0, 3, 1, 2) | |
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 | |
image = image.to(device=device, dtype=dtype) | |
image = self.CLIP_preprocess(image) | |
# if not isinstance(image, torch.Tensor): | |
# # 0-255 | |
# print("Warning: image is processed by hf's preprocess, which is different from openai original's.") | |
# image = self.feature_extractor(images=image, return_tensors="pt").pixel_values | |
image_embeddings = self.image_encoder(image).image_embeds.to(dtype=dtype) | |
image_embeddings = image_embeddings.unsqueeze(1) | |
# duplicate image embeddings for each generation per prompt, using mps friendly method | |
bs_embed, seq_len, _ = image_embeddings.shape | |
image_embeddings = image_embeddings.repeat(1, num_images_per_prompt, 1) | |
image_embeddings = image_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
if do_classifier_free_guidance: | |
negative_prompt_embeds = torch.zeros_like(image_embeddings) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings]) | |
return image_embeddings | |
def _encode_pose(self, pose, device, num_images_per_prompt, do_classifier_free_guidance): | |
dtype = next(self.unet.parameters()).dtype | |
if isinstance(pose, torch.Tensor): | |
pose_embeddings = pose.unsqueeze(0).to(device=device, dtype=dtype) | |
#pose_embeddings = pose_embeddings.unsqueeze(0).to(device=device, dtype=dtype) | |
else: | |
if isinstance(pose[0], list): | |
pose = torch.Tensor(pose) | |
else: | |
pose = torch.Tensor([pose]) | |
x, y, z = pose[:,0].unsqueeze(1), pose[:,1].unsqueeze(1), pose[:,2].unsqueeze(1) | |
pose_embeddings = torch.cat([torch.deg2rad(x), | |
torch.sin(torch.deg2rad(y)), | |
torch.cos(torch.deg2rad(y)), | |
z], dim=-1).unsqueeze(1).to(device=device, dtype=dtype) # B, 1, 4 | |
# duplicate pose embeddings for each generation per prompt, using mps friendly method | |
bs_embed, seq_len, _ = pose_embeddings.shape | |
# pose_embeddings = pose_embeddings.repeat(1, num_images_per_prompt, 1) | |
# pose_embeddings = pose_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
if do_classifier_free_guidance: | |
negative_prompt_embeds = torch.zeros_like(pose_embeddings) | |
pose_embeddings = torch.cat([negative_prompt_embeds, pose_embeddings]) | |
return pose_embeddings | |
def _encode_image_with_pose(self, image, pose, device, num_images_per_prompt, do_classifier_free_guidance): | |
img_prompt_embeds = self._encode_image(image, device, num_images_per_prompt, False) | |
pose_prompt_embeds = self._encode_pose(pose, device, num_images_per_prompt, False) | |
prompt_embeds = torch.cat([img_prompt_embeds, pose_prompt_embeds], dim=-1) | |
prompt_embeds = self.cc_projection(prompt_embeds) | |
prompt_embeds = img_prompt_embeds | |
# follow 0123, add negative prompt, after projection | |
if do_classifier_free_guidance: | |
negative_prompt = torch.zeros_like(prompt_embeds) | |
prompt_embeds = torch.cat([negative_prompt, prompt_embeds]) | |
return prompt_embeds | |
def _encode_prompt(self, prompt, device, do_classifier_free_guidance, negative_prompt): | |
if isinstance(prompt, torch.Tensor): | |
batch_size = prompt.shape[0] | |
text_input_ids = prompt | |
else: | |
batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, | |
untruncated_ids): | |
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1: -1]) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = text_inputs.attention_mask.to(device) | |
else: | |
attention_mask = None | |
text_embeddings = self.text_encoder( | |
text_input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
text_embeddings = text_embeddings[0] | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
bs_embed, seq_len, _ = text_embeddings.shape | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance: | |
uncond_tokens: List[str] | |
if negative_prompt is None: | |
uncond_tokens = [""] * batch_size | |
elif type(prompt) is not type(negative_prompt): | |
raise TypeError( | |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}." | |
) | |
elif isinstance(negative_prompt, str): | |
uncond_tokens = [negative_prompt] | |
elif batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
else: | |
uncond_tokens = negative_prompt | |
max_length = text_input_ids.shape[-1] | |
uncond_input = self.tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = uncond_input.attention_mask.to(device) | |
else: | |
attention_mask = None | |
uncond_embeddings = self.text_encoder( | |
uncond_input.input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
uncond_embeddings = uncond_embeddings[0] | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = uncond_embeddings.shape[1] | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | |
return text_embeddings | |
def decode_latents(self, latents): | |
latents = 1 / 0.18215 * latents | |
image = self.vae.decode(latents).sample | |
print("image", torch.max(image), torch.min(image)) | |
image = (image / 2 + 0.5).clamp(0, 1).permute(0, 2, 3, 1) | |
image = image.cpu().squeeze(0).float().numpy() | |
return image | |
def prepare_extra_step_kwargs(self, generator, eta): | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
def check_inputs(self, prompt, height, width, callback_steps): | |
if not isinstance(prompt, str) and not isinstance(prompt, list) and not isinstance(prompt, torch.Tensor): | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if height % 8 != 0 or width % 8 != 0: | |
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
if (callback_steps is None) or ( | |
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
): | |
raise ValueError( | |
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
f" {type(callback_steps)}." | |
) | |
def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): | |
if isinstance(generator, list): | |
image_latents = [ | |
self.vae.encode(image[i: i + 1]).latent_dist.sample(generator=generator[i]) | |
for i in range(image.shape[0]) | |
] | |
image_latents = torch.cat(image_latents, dim=0) | |
else: | |
image_latents = self.vae.encode(image).latent_dist.sample(generator=generator) | |
image_latents = self.vae.config.scaling_factor * image_latents | |
return image_latents | |
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None, | |
clip_length=16): | |
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if latents is None: | |
rand_device = "cpu" if device.type == "mps" else device | |
if isinstance(generator, list): | |
latents = [ | |
torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype) | |
for i in range(batch_size) | |
] | |
latents = torch.cat(latents, dim=0).to(device) | |
else: | |
latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device) | |
else: | |
if latents.shape != shape: | |
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") | |
latents = latents.to(device) | |
# scale the initial noise by the standard deviation required by the scheduler | |
noise = latents.clone() | |
latents = latents * self.scheduler.init_noise_sigma | |
return latents, noise | |
def prepare_condition(self, condition, device, dtype, do_classifier_free_guidance): | |
if isinstance(condition, torch.Tensor): | |
# suppose input is [-1, 1] | |
condition = condition | |
elif isinstance(condition, np.ndarray): | |
# suppose input is [0, 255] | |
condition = self.images2latents(condition, dtype).cuda() | |
if do_classifier_free_guidance: | |
condition_pad = torch.ones_like(condition) * -1 | |
condition = torch.cat([condition_pad, condition]) | |
return condition | |
def images2latents(self, images, dtype): | |
""" | |
Convert RGB image to VAE latents | |
""" | |
device = self._execution_device | |
if isinstance(images, torch.Tensor): | |
# suppose input is [-1, 1] | |
images = images.to(dtype) | |
if images.ndim == 3: | |
images = images.unsqueeze(0) | |
elif isinstance(images, np.ndarray): | |
# suppose input is [0, 255] | |
images = torch.from_numpy(images).float().to(dtype) / 127.5 - 1 | |
images = rearrange(images, "h w c -> c h w").to(device)[None, :] | |
latents = self.vae.encode(images)['latent_dist'].mean * self.vae.config.scaling_factor | |
return latents | |
def images2latents_new(self, images, dtype): | |
""" | |
Convert RGB image to VAE latents | |
""" | |
device = self._execution_device | |
if isinstance(images, torch.Tensor): | |
# suppose input is [-1, 1] | |
images = images.to(dtype) | |
if images.ndim == 3: | |
images = images.unsqueeze(0) | |
elif isinstance(images, np.ndarray): | |
# suppose input is [0, 255] | |
images = torch.from_numpy(images).float().to(dtype) / 255.0 | |
images = rearrange(images, "h w c -> c h w").to(device)[None, :] | |
latents = self.vae.encode(images)['latent_dist'].mean * self.vae.config.scaling_factor | |
return latents | |
def encode_single_image_latents(self, images, mask, dtype): | |
device = self._execution_device | |
images = torch.from_numpy(images).float().to(dtype) / 127.5 - 1 | |
images = rearrange(images, "h w c -> c h w").to(device) | |
latents = self.vae.encode(images[None, :])['latent_dist'].mean * 0.18215 | |
images = images.unsqueeze(0) | |
mask = torch.from_numpy(mask).float().to(dtype).to(device) / 255.0 | |
if mask.ndim == 2: | |
mask = mask[None, None, :] | |
elif mask.ndim == 3: | |
mask = mask[:, None, :, :] | |
mask = F.interpolate(mask, size=latents.shape[-2:], mode='nearest') | |
return latents, images, mask | |
def __call__( | |
self, | |
prompt: Union[str, List[str]], | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 7.5, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "np", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: Optional[int] = 1, | |
controlnet_condition: list = None, | |
controlnet_conditioning_scale: Optional[float] = 1.0, | |
init_latents: Optional[torch.FloatTensor] = None, | |
num_actual_inference_steps: Optional[int] = None, | |
reference_encoder=None, | |
ref_image=None, | |
t2i=False, | |
style_fidelity=1.0, | |
prompt_img = None, | |
poses = None, | |
x = None, | |
y = None, | |
**kwargs, | |
): | |
controlnet = self.controlnet | |
# Default height and width to unet | |
height = height or self.unet.config.sample_size * self.vae_scale_factor | |
width = width or self.unet.config.sample_size * self.vae_scale_factor | |
# Check inputs. Raise error if not correct | |
self.check_inputs(prompt, height, width, callback_steps) | |
# Define call parameters | |
# batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
batch_size = 1 | |
if latents is not None: | |
batch_size = latents.shape[0] | |
if isinstance(prompt, list): | |
batch_size = len(prompt) | |
device = self._execution_device | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# Encode input prompt | |
if not isinstance(prompt, torch.Tensor): | |
prompt = prompt if isinstance(prompt, list) else [prompt] * batch_size | |
if negative_prompt is not None: | |
negative_prompt = negative_prompt if isinstance(negative_prompt, list) else [negative_prompt] * batch_size | |
text_embeddings = self._encode_prompt( | |
prompt, device, do_classifier_free_guidance, negative_prompt | |
) | |
text_embeddings = torch.cat([text_embeddings]) | |
reference_control_writer = ReferenceAttentionControl(reference_encoder, do_classifier_free_guidance=True, | |
style_fidelity=style_fidelity, | |
mode='write', fusion_blocks='full') | |
reference_control_reader = ReferenceAttentionControl(self.unet, do_classifier_free_guidance=True, mode='read', | |
style_fidelity=style_fidelity, | |
fusion_blocks='full') | |
is_dist_initialized = kwargs.get("dist", False) | |
rank = kwargs.get("rank", 0) | |
# Prepare control_img | |
control = self.prepare_condition( | |
condition=controlnet_condition, | |
device=device, | |
dtype=controlnet.dtype, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
) | |
# for b in range(control.size(0)): | |
# max_value = torch.max(control[b]) | |
# min_value = torch.min(control[b]) | |
# control[b] = (control[b] - min_value) / (max_value - min_value) | |
# Prepare timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
num_channels_latents = self.unet.in_channels | |
latents = self.prepare_latents( | |
batch_size, | |
num_channels_latents, | |
height, | |
width, | |
text_embeddings.dtype, | |
device, | |
generator, | |
latents, | |
) | |
if isinstance(latents, tuple): | |
latents, noise = latents | |
latents_dtype = latents.dtype | |
# Prepare extra step kwargs. | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# For img2img setting | |
if num_actual_inference_steps is None: | |
num_actual_inference_steps = num_inference_steps | |
if isinstance(ref_image, str): | |
ref_image_latents = self.images2latents(np.array(Image.open(ref_image).resize((width, height))), | |
latents_dtype).cuda() | |
elif isinstance(ref_image, np.ndarray): | |
ref_image_latents = self.images2latents(ref_image, latents_dtype).cuda() | |
elif isinstance(ref_image, torch.Tensor): | |
ref_image_latents = self.images2latents(ref_image, latents_dtype).cuda() | |
ref_padding_latents = torch.ones_like(ref_image_latents) * -1 | |
ref_image_latents = torch.cat([ref_padding_latents, ref_image_latents]) if do_classifier_free_guidance else ref_image_latents | |
prompt_embeds = self._encode_image_with_pose(prompt_img, poses, device, 1, do_classifier_free_guidance) | |
noise_aug_strength = 1e-5 | |
noise_aug_strength = torch.tensor(noise_aug_strength, dtype=torch.float32).unsqueeze(0) | |
noise_aug_strength = noise_aug_strength.to(device) | |
if (x is not None) and (y is not None): | |
x = x.to(device) | |
y = y.to(device) | |
add_time_ids = self._get_add_time_ids(noise_aug_strength, x, y, do_classifier_free_guidance) | |
else: | |
add_time_ids = None | |
# Denoising loop | |
for i, t in tqdm(enumerate(timesteps), total=len(timesteps), disable=(rank != 0)): | |
if num_actual_inference_steps is not None and i < num_inference_steps - num_actual_inference_steps: | |
continue | |
# writer | |
# prepare latents | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
if t2i: | |
pass | |
else: | |
# controlnet | |
down_block_res_samples, mid_block_res_sample = self.controlnet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=text_embeddings, | |
controlnet_cond=control, | |
return_dict=False, | |
add_time_ids = add_time_ids, | |
) | |
down_block_res_samples = [sample * controlnet_conditioning_scale for sample in down_block_res_samples] | |
mid_block_res_sample = mid_block_res_sample * controlnet_conditioning_scale | |
# predict the noise residual | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=text_embeddings, | |
down_block_additional_residuals=down_block_res_samples, | |
mid_block_additional_residual=mid_block_res_sample, | |
return_dict=False, | |
)[0] | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
if is_dist_initialized: | |
dist.broadcast(latents, 0) | |
dist.barrier() | |
samples = self.decode_latents(latents) | |
if is_dist_initialized: | |
dist.barrier() | |
# Convert to tensor | |
if output_type == "tensor": | |
samples = torch.from_numpy(samples) | |
if not return_dict: | |
return samples | |
return PipelineOutput(samples=samples) | |