Spaces:
Running
on
Zero
Running
on
Zero
| from torch.utils import data | |
| import os | |
| import torch | |
| import cv2 | |
| import json | |
| class myDataset(data.Dataset): | |
| """Custom data.Dataset compatible with data.DataLoader.""" | |
| def __init__(self, train_data_dir): | |
| self.json_path = os.path.join(train_data_dir, "data_jichao.jsonl") | |
| with open(self.json_path, 'r') as f: | |
| self.data = [json.loads(line) for line in f] | |
| def __len__(self): | |
| """Return the total number of items in the dataset.""" | |
| return len(self.data) | |
| def __getitem__(self, index): | |
| """Returns one data pair (source and target).""" | |
| # seq_len, fea_dim | |
| item = self.data[index] | |
| img_hair = cv2.imread(item["target"]) | |
| img_non_hair = cv2.imread(item["source"]) | |
| ref_hair = cv2.imread(item["reference"]) | |
| img_hair = cv2.cvtColor(img_hair, cv2.COLOR_BGR2RGB) | |
| img_non_hair = cv2.cvtColor(img_non_hair, cv2.COLOR_BGR2RGB) | |
| ref_hair = cv2.cvtColor(ref_hair, cv2.COLOR_BGR2RGB) | |
| img_hair = cv2.resize(img_hair, (512, 512)) | |
| img_non_hair = cv2.resize(img_non_hair, (512, 512)) | |
| ref_hair = cv2.resize(ref_hair, (512, 512)) | |
| img_hair = (img_hair / 255.0) * 2 - 1 | |
| img_non_hair = (img_non_hair/255.0) * 2 - 1 | |
| ref_hair = (ref_hair / 255.0) * 2 - 1 | |
| img_hair = torch.tensor(img_hair) | |
| img_non_hair = torch.tensor(img_non_hair) | |
| ref_hair = torch.tensor(ref_hair) | |
| img_hair = torch.tensor(img_hair).permute(2, 0, 1) | |
| img_non_hair = torch.tensor(img_non_hair).permute(2, 0, 1) | |
| ref_hair = torch.tensor(ref_hair).permute(2, 0, 1) | |
| return { | |
| 'img_hair': img_hair, | |
| 'img_non_hair': img_non_hair, | |
| 'ref_hair': ref_hair | |
| } | |
| if __name__ == "__main__": | |
| train_dataset = myDataset("./data") | |
| train_dataloader = torch.utils.data.DataLoader( | |
| train_dataset, | |
| batch_size=1, | |
| num_workers=1, | |
| ) | |
| for epoch in range(0, len(train_dataset) + 1): | |
| for step, batch in enumerate(train_dataloader): | |
| print("batch[hair_pose]:", batch["hair_pose"]) | |
| print("batch[img_hair]:", batch["img_hair"]) | |
| print("batch[bald_pose]:", batch["bald_pose"]) | |
| print("batch[img_non_hair]:", batch["img_non_hair"]) | |
| print("batch[ref_hair]:", batch["ref_hair"]) |