Spaces:
Running
on
Zero
Running
on
Zero
| from torch.utils import data | |
| import os | |
| import torch | |
| import numpy as np | |
| import cv2 | |
| import random | |
| class myDataset(data.Dataset): | |
| """Custom data.Dataset compatible with data.DataLoader.""" | |
| def __init__(self, train_data_dir): | |
| self.img_path = os.path.join(train_data_dir, "hair") | |
| self.pose_path = os.path.join(train_data_dir, "pose.npy") | |
| self.non_hair_path = os.path.join(train_data_dir, "no_hair") | |
| self.ref_path = os.path.join(train_data_dir, "ref_hair") | |
| self.lists = os.listdir(self.img_path) | |
| self.len = len(self.lists) | |
| self.pose = np.load(self.pose_path) | |
| def __getitem__(self, index): | |
| """Returns one data pair (source and target).""" | |
| # seq_len, fea_dim | |
| random_number1 = random.randrange(0, 12) | |
| random_number2 = random.randrange(0, 12) | |
| while random_number2 == random_number1: | |
| random_number2 = random.randrange(0, 12) | |
| name = self.lists[index] | |
| #random_number1 = random_number1 * 10 | |
| #random_number2 = random_number2 * 10 | |
| random_number2 = random_number1 | |
| hair_path = os.path.join(self.img_path, name, str(random_number1) + '.jpg') | |
| non_hair_path = os.path.join(self.non_hair_path, name, str(random_number2) + '.jpg') | |
| ref_folder = os.path.join(self.ref_path, name) | |
| files = [f for f in os.listdir(ref_folder) if f.endswith('.jpg')] | |
| ref_path = os.path.join(ref_folder, files[0]) | |
| img_hair = cv2.imread(hair_path) | |
| img_non_hair = cv2.imread(non_hair_path) | |
| ref_hair = cv2.imread(ref_path) | |
| img_hair = cv2.cvtColor(img_hair, cv2.COLOR_BGR2RGB) | |
| img_non_hair = cv2.cvtColor(img_non_hair, cv2.COLOR_BGR2RGB) | |
| ref_hair = cv2.cvtColor(ref_hair, cv2.COLOR_BGR2RGB) | |
| img_hair = cv2.resize(img_hair, (512, 512)) | |
| img_non_hair = cv2.resize(img_non_hair, (512, 512)) | |
| ref_hair = cv2.resize(ref_hair, (512, 512)) | |
| img_hair = (img_hair / 255.0) * 2 - 1 | |
| img_non_hair = (img_non_hair / 255.0) * 2 - 1 | |
| ref_hair = (ref_hair / 255.0) * 2 - 1 | |
| img_hair = torch.tensor(img_hair).permute(2, 0, 1) | |
| img_non_hair = torch.tensor(img_non_hair).permute(2, 0, 1) | |
| ref_hair = torch.tensor(ref_hair).permute(2, 0, 1) | |
| pose1 = self.pose[random_number1] | |
| pose1 = torch.tensor(pose1) | |
| pose2 = self.pose[random_number2] | |
| pose2 = torch.tensor(pose2) | |
| return { | |
| 'hair_pose': pose1, | |
| 'img_hair': img_hair, | |
| 'bald_pose': pose2, | |
| 'img_non_hair': img_non_hair, | |
| 'ref_hair': ref_hair | |
| } | |
| def __len__(self): | |
| return self.len | |
| if __name__ == "__main__": | |
| train_dataset = myDataset("./data") | |
| train_dataloader = torch.utils.data.DataLoader( | |
| train_dataset, | |
| batch_size=1, | |
| num_workers=1, | |
| ) | |
| for epoch in range(0, len(train_dataset) + 1): | |
| for step, batch in enumerate(train_dataloader): | |
| print("batch[hair_pose]:", batch["hair_pose"]) | |
| print("batch[img_hair]:", batch["img_hair"]) | |
| print("batch[bald_pose]:", batch["bald_pose"]) | |
| print("batch[img_non_hair]:", batch["img_non_hair"]) | |
| print("batch[ref_hair]:", batch["ref_hair"]) | |