Spaces:
Running
on
Zero
Running
on
Zero
File size: 27,616 Bytes
8ca3766 af8f9f7 a5c8b6d af8f9f7 d5a352b af8f9f7 8ca3766 af8f9f7 eae8684 af8f9f7 9536d33 af8f9f7 04f9c50 af8f9f7 9536d33 af8f9f7 9536d33 a5c8b6d af8f9f7 a5c8b6d af8f9f7 a5c8b6d af8f9f7 9536d33 a5c8b6d af8f9f7 a5c8b6d af8f9f7 9536d33 af8f9f7 04f9c50 af8f9f7 eae8684 8ca3766 af8f9f7 8ca3766 b0560e7 04f9c50 b0560e7 04f9c50 b0560e7 d5a352b b0560e7 d5a352b b0560e7 d5a352b b0560e7 d5a352b b0560e7 d5a352b b0560e7 d5a352b b0560e7 d5a352b b0560e7 d5a352b b0560e7 d5a352b b0560e7 d5a352b b0560e7 d5a352b b0560e7 d5a352b b0560e7 d5a352b b0560e7 d5a352b b0560e7 d5a352b b0560e7 d5a352b b0560e7 8ca3766 627b1b8 af8f9f7 14a6072 af8f9f7 8ca3766 d5a352b 2cc7422 8ca3766 45c12d5 d5a352b af8f9f7 627b1b8 b0560e7 af8f9f7 8ca3766 af8f9f7 d5a352b 8ca3766 d5a352b 8ca3766 af8f9f7 d5a352b 8ca3766 d5a352b 753f533 af8f9f7 8ca3766 af8f9f7 8ca3766 af8f9f7 8ca3766 af8f9f7 8ca3766 45c12d5 8ca3766 b0560e7 d5a352b b0560e7 d5a352b 753f533 af8f9f7 d5a352b 8ca3766 d5a352b 753f533 8ca3766 af8f9f7 d5a352b 8ca3766 d5a352b 8ca3766 af8f9f7 8ca3766 753f533 8ca3766 af8f9f7 8ca3766 af8f9f7 8ca3766 af8f9f7 8ca3766 af8f9f7 8ca3766 af8f9f7 8ca3766 af8f9f7 8ca3766 753f533 8ca3766 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 |
import os
import sys
import uuid
import logging
import base64
import shutil
from typing import Optional, Tuple
import gradio as gr
import spaces
import torch
import cv2
import numpy as np
import time
from huggingface_hub import snapshot_download
# -----------------------------------------------------------------------------
# Environment for HF Spaces
# -----------------------------------------------------------------------------
os.environ.setdefault("GRADIO_TEMP_DIR", "/tmp/gradio")
os.environ.setdefault("TMPDIR", "/tmp")
os.makedirs(os.environ["GRADIO_TEMP_DIR"], exist_ok=True)
os.makedirs(os.environ["TMPDIR"], exist_ok=True)
# -----------------------------------------------------------------------------
# Config via environment variables (set these in your Space settings)
# -----------------------------------------------------------------------------
# Required (you uploaded these as separate model repos on HF):
# - FFHQFACEALIGNMENT_REPO (e.g., "yourname/FFHQFaceAlignment")
# - HAIRMAPPER_REPO (e.g., "yourname/HairMapper")
# - SD15_REPO (e.g., "yourname/stable-diffusion-v1-5")
# Optional:
# - TRAINED_MODEL_REPO (if you uploaded motion/control/ref ckpts as a repo)
# If TRAINED_MODEL_REPO not provided, we will try to use local "./pretrain".
FFHQFACEALIGNMENT_REPO = os.getenv("FFHQFACEALIGNMENT_REPO", "")
HAIRMAPPER_REPO = os.getenv("HAIRMAPPER_REPO", "")
SD15_REPO = os.getenv("SD15_REPO", "")
TRAINED_MODEL_REPO = os.getenv("TRAINED_MODEL_REPO", "")
# 优先读取官方变量名,其次兼容 HF_TOKEN
HF_AUTH_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN") or os.getenv("HF_TOKEN")
# 需要的权重文件清单
REQUIRED_WEIGHT_FILENAMES = [
"pytorch_model.bin",
"motion_module-4140000.pth",
"pytorch_model_1.bin",
"pytorch_model_2.bin",
]
# -----------------------------------------------------------------------------
# Utilities
# -----------------------------------------------------------------------------
def _ensure_symlink(src_dir: str, dst_path: str) -> str:
"""Create a directory symlink at dst_path pointing to src_dir if not exists.
If symlink creation is unavailable, fallback to copying a minimal structure.
Returns the final path that should be used by imports (dst_path if created, else src_dir).
"""
try:
if os.path.islink(dst_path) or os.path.isdir(dst_path):
return dst_path
os.symlink(src_dir, dst_path, target_is_directory=True)
return dst_path
except Exception:
# Fallback: try to create the directory and copy only top-level python files/dirs needed
try:
if not os.path.exists(dst_path):
os.makedirs(dst_path, exist_ok=True)
# Last resort: shallow copy (can still be heavy; symlink is preferred on HF Linux)
for name in os.listdir(src_dir):
src = os.path.join(src_dir, name)
dst = os.path.join(dst_path, name)
if os.path.exists(dst):
continue
if os.path.isdir(src):
shutil.copytree(src, dst)
else:
shutil.copy2(src, dst)
return dst_path
except Exception:
# Give up and return original source
return src_dir
def _find_model_root(path: str) -> str:
"""Given a snapshot path, return the directory containing model_index.json.
Handles repos that nest the folder (e.g., repo/stable-diffusion-v1-5/...).
"""
if os.path.isfile(os.path.join(path, "model_index.json")):
return path
# Search one level deep for a folder with model_index.json
for name in os.listdir(path):
cand = os.path.join(path, name)
if os.path.isdir(cand) and os.path.isfile(os.path.join(cand, "model_index.json")):
return cand
# As a fallback, return original path
return path
def _download_models() -> Tuple[Optional[str], Optional[str], Optional[str]]:
"""Download HF model repos and prepare local paths.
Returns:
- sd15_path: path to the Stable Diffusion v1-5 folder (with model_index.json)
- hairmapper_dir: path to local HairMapper folder (import root)
- ffhq_dir: path to local FFHQFaceAlignment folder (import root)
"""
cache_dir = os.getenv("HF_HUB_CACHE", None)
# 1) Stable Diffusion 1.5
sd15_path = None
if SD15_REPO:
sd_snap = snapshot_download(
repo_id=SD15_REPO,
local_files_only=False,
cache_dir=cache_dir,
token=HF_AUTH_TOKEN,
)
sd15_path = _find_model_root(sd_snap)
# 2) HairMapper
hairmapper_dir = None
if HAIRMAPPER_REPO:
hm_snap = snapshot_download(
repo_id=HAIRMAPPER_REPO,
local_files_only=False,
cache_dir=cache_dir,
token=HF_AUTH_TOKEN,
)
# If repo root contains a nested "HairMapper" folder, link to that subfolder.
hm_src = hm_snap
nested_hm = os.path.join(hm_snap, "HairMapper")
if os.path.isdir(nested_hm) and (
os.path.isfile(os.path.join(nested_hm, "hair_mapper_run.py")) or
os.path.isdir(os.path.join(nested_hm, "mapper"))
):
hm_src = nested_hm
# Create a symlink so that imports like "from HairMapper..." work
hairmapper_dir = _ensure_symlink(hm_src, os.path.abspath("HairMapper"))
if hairmapper_dir not in sys.path:
sys.path.insert(0, os.path.dirname(hairmapper_dir))
# 3) FFHQFaceAlignment
ffhq_dir = None
if FFHQFACEALIGNMENT_REPO:
fa_snap = snapshot_download(
repo_id=FFHQFACEALIGNMENT_REPO,
local_files_only=False,
cache_dir=cache_dir,
token=HF_AUTH_TOKEN,
)
# If repo root contains a nested "FFHQFaceAlignment" folder, link to that subfolder.
fa_src = fa_snap
nested_fa = os.path.join(fa_snap, "FFHQFaceAlignment")
if os.path.isdir(nested_fa) and (
os.path.isfile(os.path.join(nested_fa, "align.py")) or
os.path.isdir(os.path.join(nested_fa, "lib"))
):
fa_src = nested_fa
# Create a symlink so that _maybe_align_image can import modules relatively
ffhq_dir = _ensure_symlink(fa_src, os.path.abspath("FFHQFaceAlignment"))
if ffhq_dir not in sys.path:
sys.path.insert(0, os.path.dirname(ffhq_dir))
# 4) Optional: Trained model weights (motion/control/ref)
if TRAINED_MODEL_REPO:
tm_snap = snapshot_download(
repo_id=TRAINED_MODEL_REPO,
local_files_only=False,
cache_dir=cache_dir,
token=HF_AUTH_TOKEN,
)
# Symlink to ./trained_model so downstream code can load from there
tm_linked = _ensure_symlink(tm_snap, os.path.abspath("trained_model"))
# If the repo contains a nested pretrain/ folder, also expose it at ./pretrain
nested_pretrain = os.path.join(tm_linked, "pretrain")
if os.path.isdir(nested_pretrain):
_ensure_symlink(nested_pretrain, os.path.abspath("pretrain"))
return sd15_path, hairmapper_dir, ffhq_dir
# -----------------------------------------------------------------------------
# Lazy imports that rely on downloaded models/paths
# -----------------------------------------------------------------------------
def _import_inference_bits():
from test_stablehairv2 import log_validation
from test_stablehairv2 import UNet3DConditionModel, ControlNetModel, CCProjection
from test_stablehairv2 import AutoTokenizer, CLIPVisionModelWithProjection, AutoencoderKL, UNet2DConditionModel
from test_stablehairv2 import _maybe_align_image
from HairMapper.hair_mapper_run import bald_head
return (
log_validation,
UNet3DConditionModel,
ControlNetModel,
CCProjection,
AutoTokenizer,
CLIPVisionModelWithProjection,
AutoencoderKL,
UNet2DConditionModel,
_maybe_align_image,
bald_head,
)
# -----------------------------------------------------------------------------
# Prepare models on startup
# -----------------------------------------------------------------------------
SD15_PATH, _, _ = _download_models()
# -----------------------------------------------------------------------------
# Global model loading (CPU) so GPU task only does inference
# -----------------------------------------------------------------------------
def _has_all_weights(dir_path: str) -> bool:
return all(os.path.isfile(os.path.join(dir_path, name)) for name in REQUIRED_WEIGHT_FILENAMES)
def _resolve_trained_model_dir() -> str:
pretrain_dir = os.path.abspath("pretrain") if os.path.isdir("pretrain") else None
trained_dir = os.path.abspath("trained_model") if os.path.isdir("trained_model") else None
trained_dir_nested = os.path.join(trained_dir, "pretrain") if trained_dir else None
# 优先使用 pretrain(你已说明文件在此),并校验文件齐全
if pretrain_dir and _has_all_weights(pretrain_dir):
return pretrain_dir
# 其次尝试 trained_model,并校验文件齐全
if trained_dir and _has_all_weights(trained_dir):
return trained_dir
# 再尝试 trained_model/pretrain 子目录
if trained_dir_nested and os.path.isdir(trained_dir_nested) and _has_all_weights(trained_dir_nested):
return trained_dir_nested
# 构造更友好的报错信息
def _missing_list(dir_path: str) -> str:
if not dir_path:
return "目录不存在"
missing = [n for n in REQUIRED_WEIGHT_FILENAMES if not os.path.isfile(os.path.join(dir_path, n))]
if not missing:
return "文件齐全"
return "缺少: " + ", ".join(missing)
msg = (
"Missing trained model weights. Provide TRAINED_MODEL_REPO or include ./pretrain.\n"
f"pretrain 状态: {_missing_list(pretrain_dir)}\n"
f"trained_model 状态: {_missing_list(trained_dir)}\n"
f"trained_model/pretrain 状态: {_missing_list(trained_dir_nested)}"
)
raise RuntimeError(msg)
# Lazy globals
G_ARGS = None
G_INFER_CONFIG = None
G_TOKENIZER = None
G_IMAGE_ENCODER = None
G_VAE = None
G_UNET2 = None
G_CONTROLNET = None
G_DENOISING_UNET = None
G_CC_PROJ = None
G_HAIR_ENCODER = None
def _load_models_cpu_once():
global G_ARGS, G_INFER_CONFIG, G_TOKENIZER, G_IMAGE_ENCODER, G_VAE
global G_UNET2, G_CONTROLNET, G_DENOISING_UNET, G_CC_PROJ, G_HAIR_ENCODER
if all(x is not None for x in (
G_ARGS, G_INFER_CONFIG, G_TOKENIZER, G_IMAGE_ENCODER, G_VAE,
G_UNET2, G_CONTROLNET, G_DENOISING_UNET, G_CC_PROJ, G_HAIR_ENCODER
)):
return
class _Args:
pretrained_model_name_or_path = SD15_PATH or os.path.abspath("stable-diffusion-v1-5/stable-diffusion-v1-5")
model_path = _resolve_trained_model_dir()
image_encoder = "openai/clip-vit-large-patch14"
controlnet_model_name_or_path = None
revision = None
output_dir = "gradio_outputs"
seed = 42
num_validation_images = 1
validation_ids = []
validation_hairs = []
use_fp16 = False
align_before_infer = True
align_size = 1024
G_ARGS = _Args()
# Import heavy libs only here
from test_stablehairv2 import AutoTokenizer, CLIPVisionModelWithProjection, AutoencoderKL, UNet2DConditionModel
from test_stablehairv2 import UNet3DConditionModel, CCProjection, ControlNetModel
from omegaconf import OmegaConf
# Config
t0 = time.perf_counter()
t = time.perf_counter()
G_INFER_CONFIG = OmegaConf.load('./configs/inference/inference_v2.yaml')
print(f"[timing:init] load infer config: {time.perf_counter()-t:.2f}s", flush=True)
# Tokenizer / encoders / vae (CPU)
t = time.perf_counter()
G_TOKENIZER = AutoTokenizer.from_pretrained(G_ARGS.pretrained_model_name_or_path, subfolder="tokenizer",
revision=G_ARGS.revision)
print(f"[timing:init] tokenizer: {time.perf_counter()-t:.2f}s", flush=True)
t = time.perf_counter()
G_IMAGE_ENCODER = CLIPVisionModelWithProjection.from_pretrained(G_ARGS.image_encoder, revision=G_ARGS.revision)
print(f"[timing:init] image_encoder: {time.perf_counter()-t:.2f}s", flush=True)
t = time.perf_counter()
G_VAE = AutoencoderKL.from_pretrained(G_ARGS.pretrained_model_name_or_path, subfolder="vae",
revision=G_ARGS.revision)
print(f"[timing:init] vae: {time.perf_counter()-t:.2f}s", flush=True)
# UNet2D with 8-channel conv_in (CPU)
t = time.perf_counter()
G_UNET2 = UNet2DConditionModel.from_pretrained(
G_ARGS.pretrained_model_name_or_path, subfolder="unet", revision=G_ARGS.revision, torch_dtype=torch.float32
)
conv_in_8 = torch.nn.Conv2d(8, G_UNET2.conv_in.out_channels, kernel_size=G_UNET2.conv_in.kernel_size,
padding=G_UNET2.conv_in.padding)
conv_in_8.requires_grad_(False)
G_UNET2.conv_in.requires_grad_(False)
torch.nn.init.zeros_(conv_in_8.weight)
conv_in_8.weight[:, :4, :, :].copy_(G_UNET2.conv_in.weight)
conv_in_8.bias.copy_(G_UNET2.conv_in.bias)
G_UNET2.conv_in = conv_in_8
print(f"[timing:init] unet2 + conv_in adapt: {time.perf_counter()-t:.2f}s", flush=True)
# ControlNet (CPU)
t = time.perf_counter()
G_CONTROLNET = ControlNetModel.from_unet(G_UNET2)
state_dict2 = torch.load(os.path.join(G_ARGS.model_path, "pytorch_model.bin"), map_location="cpu")
G_CONTROLNET.load_state_dict(state_dict2, strict=False)
print(f"[timing:init] controlnet load_state: {time.perf_counter()-t:.2f}s", flush=True)
# UNet3D (CPU)
t = time.perf_counter()
prefix = "motion_module"
ckpt_num = "4140000"
save_path = os.path.join(G_ARGS.model_path, f"{prefix}-{ckpt_num}.pth")
G_DENOISING_UNET = UNet3DConditionModel.from_pretrained_2d(
G_ARGS.pretrained_model_name_or_path,
save_path,
subfolder="unet",
unet_additional_kwargs=G_INFER_CONFIG.unet_additional_kwargs,
)
print(f"[timing:init] unet3d from_pretrained_2d: {time.perf_counter()-t:.2f}s", flush=True)
# CC projection (CPU)
t = time.perf_counter()
G_CC_PROJ = CCProjection()
state_dict3 = torch.load(os.path.join(G_ARGS.model_path, "pytorch_model_1.bin"), map_location="cpu")
G_CC_PROJ.load_state_dict(state_dict3, strict=False)
print(f"[timing:init] cc_projection load_state: {time.perf_counter()-t:.2f}s", flush=True)
# Hair encoder (CPU)
t = time.perf_counter()
from ref_encoder.reference_unet import ref_unet
G_HAIR_ENCODER = ref_unet.from_pretrained(
G_ARGS.pretrained_model_name_or_path, subfolder="unet", revision=G_ARGS.revision, low_cpu_mem_usage=False,
device_map=None, ignore_mismatched_sizes=True
)
state_dict4 = torch.load(os.path.join(G_ARGS.model_path, "pytorch_model_2.bin"), map_location="cpu")
G_HAIR_ENCODER.load_state_dict(state_dict4, strict=False)
print(f"[timing:init] hair_encoder load_state: {time.perf_counter()-t:.2f}s", flush=True)
print(f"[timing:init] total preload: {time.perf_counter()-t0:.2f}s", flush=True)
try:
_load_models_cpu_once()
except Exception as _e:
print(f"[init] Model preload warning: {_e}", flush=True)
def _ensure_models_loaded():
"""Ensure global models are loaded on CPU. If missing, try to load now; otherwise raise with hint."""
global G_ARGS, G_INFER_CONFIG, G_TOKENIZER, G_IMAGE_ENCODER, G_VAE
global G_UNET2, G_CONTROLNET, G_DENOISING_UNET, G_CC_PROJ, G_HAIR_ENCODER
if any(x is None for x in (
G_ARGS, G_INFER_CONFIG, G_TOKENIZER, G_IMAGE_ENCODER, G_VAE,
G_UNET2, G_CONTROLNET, G_DENOISING_UNET, G_CC_PROJ, G_HAIR_ENCODER
)):
print("[inference] Detected unloaded models. Loading on CPU...", flush=True)
_load_models_cpu_once()
if any(x is None for x in (
G_ARGS, G_INFER_CONFIG, G_TOKENIZER, G_IMAGE_ENCODER, G_VAE,
G_UNET2, G_CONTROLNET, G_DENOISING_UNET, G_CC_PROJ, G_HAIR_ENCODER
)):
raise RuntimeError(
"Models failed to load. Check SD15_REPO (must be a valid SD1.5 repo) and weights in ./pretrain or TRAINED_MODEL_REPO."
)
# -----------------------------------------------------------------------------
# Gradio inference
# -----------------------------------------------------------------------------
with open("imgs/background.png", "rb") as f:
_b64_bg = base64.b64encode(f.read()).decode()
@spaces.GPU(duration=300)
def inference(id_image, hair_image):
# ZeroGPU: 强制使用 'cuda' 设备(ZeroGPU 下 torch.cuda.is_available 可能为 False)。
device = torch.device("cuda")
t_total = time.perf_counter()
# 确保全局模型已加载
_ensure_models_loaded()
# 导入依赖(轻量函数,不再加载大模型)
(
log_validation,
UNet3DConditionModel,
ControlNetModel,
CCProjection,
AutoTokenizer,
CLIPVisionModelWithProjection,
AutoencoderKL,
UNet2DConditionModel,
_maybe_align_image,
bald_head,
) = _import_inference_bits()
os.makedirs("gradio_inputs", exist_ok=True)
os.makedirs("gradio_outputs", exist_ok=True)
id_path = "gradio_inputs/id.png"
hair_path = "gradio_inputs/hair.png"
id_image.save(id_path)
hair_image.save(hair_path)
# Align
t = time.perf_counter()
aligned_id = _maybe_align_image(id_path, output_size=1024, prefer_cuda=True)
aligned_hair = _maybe_align_image(hair_path, output_size=1024, prefer_cuda=True)
print(f"[timing] align total: {time.perf_counter()-t:.2f}s", flush=True)
aligned_id_path = "gradio_outputs/aligned_id.png"
aligned_hair_path = "gradio_outputs/aligned_hair.png"
cv2.imwrite(aligned_id_path, cv2.cvtColor(aligned_id, cv2.COLOR_RGB2BGR))
cv2.imwrite(aligned_hair_path, cv2.cvtColor(aligned_hair, cv2.COLOR_RGB2BGR))
# Balding
t = time.perf_counter()
bald_id_path = "gradio_outputs/bald_id.png"
cv2.imwrite(bald_id_path, cv2.cvtColor(aligned_id, cv2.COLOR_RGB2BGR))
bald_head(bald_id_path, bald_id_path)
print(f"[timing] bald_head: {time.perf_counter()-t:.2f}s", flush=True)
# Resolve trained model dir
trained_model_dir = os.path.abspath("trained_model") if os.path.isdir("trained_model") else None
if trained_model_dir is None and os.path.isdir("pretrain"):
trained_model_dir = os.path.abspath("pretrain")
if trained_model_dir is None:
raise RuntimeError("Missing trained model weights. Provide TRAINED_MODEL_REPO or include ./pretrain.")
class Args:
pretrained_model_name_or_path = SD15_PATH or os.path.abspath("stable-diffusion-v1-5/stable-diffusion-v1-5")
model_path = trained_model_dir
image_encoder = "openai/clip-vit-large-patch14"
controlnet_model_name_or_path = None
revision = None
output_dir = "gradio_outputs"
seed = 42
num_validation_images = 1
validation_ids = [aligned_id_path]
validation_hairs = [aligned_hair_path]
use_fp16 = False
align_before_infer = True
align_size = 1024
args = Args()
device = torch.device("cuda")
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger = logging.getLogger(__name__)
# 将已加载的全局模型迁移到 GPU
t = time.perf_counter()
tokenizer = G_TOKENIZER
image_encoder = G_IMAGE_ENCODER.to(device)
vae = G_VAE.to(device, dtype=torch.float32)
unet2 = G_UNET2.to(device)
controlnet = G_CONTROLNET.to(device)
denoising_unet = G_DENOISING_UNET.to(device)
cc_projection = G_CC_PROJ.to(device)
Hair_Encoder = G_HAIR_ENCODER.to(device)
print(f"[timing] move models to cuda: {time.perf_counter()-t:.2f}s", flush=True)
# Run inference
t = time.perf_counter()
log_validation(
vae, tokenizer, image_encoder, denoising_unet,
args, device, logger,
cc_projection, controlnet, Hair_Encoder
)
print(f"[timing] sd pipeline (log_validation): {time.perf_counter()-t:.2f}s", flush=True)
output_video = os.path.join(args.output_dir, "validation", "generated_video_0.mp4")
# Extract frames for slider preview
t = time.perf_counter()
frames_dir = os.path.join(args.output_dir, "frames", uuid.uuid4().hex)
os.makedirs(frames_dir, exist_ok=True)
cap = cv2.VideoCapture(output_video)
frames_list = []
idx = 0
while True:
ret, frame = cap.read()
if not ret:
break
fp = os.path.join(frames_dir, f"{idx:03d}.png")
cv2.imwrite(fp, frame)
frames_list.append(fp)
idx += 1
cap.release()
print(f"[timing] extract frames: {time.perf_counter()-t:.2f}s", flush=True)
print(f"[timing] total inference: {time.perf_counter()-t_total:.2f}s", flush=True)
max_frames = len(frames_list) if frames_list else 1
first_frame = frames_list[0] if frames_list else None
return (
aligned_id_path,
aligned_hair_path,
bald_id_path,
output_video,
frames_list,
gr.update(minimum=1, maximum=max_frames, value=1, step=1),
first_frame,
)
# -----------------------------------------------------------------------------
# UI (Blocks)
# -----------------------------------------------------------------------------
CSS = f"""
html, body {{
height: 100%;
margin: 0;
padding: 0;
}}
.gradio-container {{
width: 100% !important;
height: 100% !important;
margin: 0 !important;
padding: 0 !important;
background-image: url("data:image/png;base64,{_b64_bg}");
background-size: cover;
background-position: center;
background-attachment: fixed;
}}
#title-card {{
background: rgba(255, 255, 255, 0.8);
border-radius: 12px;
padding: 16px 24px;
box-shadow: 0 2px 8px rgba(0,0,0,0.15);
margin-bottom: 20px;
}}
#title-card h2 {{
text-align: center;
margin: 4px 0 12px 0;
font-size: 28px;
}}
#title-card p {{
text-align: center;
font-size: 16px;
color: #374151;
}}
.out-card {{
border:1px solid #e5e7eb; border-radius:10px; padding:10px;
background: rgba(255,255,255,0.85);
}}
.two-col {{
display:grid !important; grid-template-columns: 360px minmax(680px, 1fr); gap:16px
}}
.left-pane {{min-width: 360px}}
.right-pane {{min-width: 680px}}
.tabs {{
background: rgba(255,255,255,0.88);
border-radius: 12px;
box-shadow: 0 8px 24px rgba(0,0,0,0.08);
padding: 8px;
border: 1px solid #e5e7eb;
}}
.tab-nav {{
display: flex; gap: 8px; margin-bottom: 8px;
background: transparent;
border-bottom: 1px solid #e5e7eb;
padding-bottom: 6px;
}}
.tabitem {{
background: rgba(255,255,255,0.88);
border-radius: 10px;
padding: 8px;
}}
#hair_gallery_wrap {{
height: 260px !important;
overflow-y: scroll !important;
overflow-x: auto !important;
}}
#hair_gallery_wrap .grid, #hair_gallery_wrap .wrap {{
height: 100% !important;
overflow-y: scroll !important;
}}
#hair_gallery {{
height: 100% !important;
}}
"""
with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo", neutral_hue="slate"), css=CSS) as demo:
with gr.Group(elem_id="title-card"):
gr.Markdown("""
<h2 id='title'>StableHairV2 多视角发型迁移</h2>
<p>上传身份图与发型参考图,系统将自动完成 <b>对齐 → 秃头化 → 视频生成</b>。</p>
""")
with gr.Row(elem_classes=["two-col"]):
with gr.Column(scale=5, min_width=260, elem_classes=["left-pane"]):
id_input = gr.Image(type="pil", label="身份图", height=200)
hair_input = gr.Image(type="pil", label="发型参考图", height=200)
with gr.Row():
run_btn = gr.Button("开始生成", variant="primary")
clear_btn = gr.Button("清空")
def _list_imgs(dir_path: str):
exts = (".png", ".jpg", ".jpeg", ".webp")
try:
files = [os.path.join(dir_path, f) for f in sorted(os.listdir(dir_path)) if f.lower().endswith(exts)]
return files
except Exception:
return []
hair_list = _list_imgs("hair_resposity")
with gr.Accordion("发型库(点击选择后自动填充)", open=True):
with gr.Group(elem_id="hair_gallery_wrap"):
gallery = gr.Gallery(value=hair_list, columns=4, rows=2, allow_preview=True, label="发型库",
elem_id="hair_gallery")
def _pick_hair(evt: gr.SelectData): # type: ignore[name-defined]
i = evt.index if hasattr(evt, 'index') else 0
i = 0 if i is None else int(i)
if 0 <= i < len(hair_list):
return gr.update(value=hair_list[i])
return gr.update()
gallery.select(_pick_hair, inputs=None, outputs=hair_input)
with gr.Column(scale=7, min_width=520, elem_classes=["right-pane"]):
with gr.Tabs():
with gr.TabItem("生成视频"):
with gr.Group(elem_classes=["out-card"]):
video_out = gr.Video(label="生成的视频", height=340)
with gr.Row():
frame_slider = gr.Slider(1, 21, value=1, step=1, label="多视角预览(拖动查看帧)")
frame_preview = gr.Image(type="filepath", label="预览帧", height=260)
frames_state = gr.State([])
with gr.TabItem("归一化对齐结果"):
with gr.Group(elem_classes=["out-card"]):
with gr.Row():
aligned_id_out = gr.Image(type="filepath", label="对齐后的身份图", height=240)
aligned_hair_out = gr.Image(type="filepath", label="对齐后的发型图", height=240)
with gr.TabItem("秃头化结果"):
with gr.Group(elem_classes=["out-card"]):
bald_id_out = gr.Image(type="filepath", label="秃头化后的身份图", height=260)
run_btn.click(
fn=inference,
inputs=[id_input, hair_input],
outputs=[aligned_id_out, aligned_hair_out, bald_id_out, video_out, frames_state, frame_slider, frame_preview],
)
def _on_slide(frames, idx):
if not frames:
return gr.update()
i = int(idx) - 1
i = max(0, min(i, len(frames) - 1))
return gr.update(value=frames[i])
frame_slider.change(_on_slide, inputs=[frames_state, frame_slider], outputs=frame_preview)
def _clear():
return None, None, None, None, None
clear_btn.click(_clear, None, [id_input, hair_input, aligned_id_out, aligned_hair_out, bald_id_out])
if __name__ == "__main__":
demo.queue().launch(server_name="0.0.0.0", server_port=7860)
|