Spaces:
Sleeping
Sleeping
File size: 12,724 Bytes
8ca3766 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
#!/usr/bin/env python3
import argparse
import logging
import sys
import os
import random
import numpy as np
import cv2
import torch
from PIL import Image
from transformers import AutoTokenizer, CLIPVisionModelWithProjection
from diffusers import AutoencoderKL, UniPCMultistepScheduler, UNet2DConditionModel
from src.models.unet_3d import UNet3DConditionModel
from ref_encoder.reference_unet import CCProjection
from ref_encoder.latent_controlnet import ControlNetModel
from src.pipelines.pipeline_pose2vid_long import Pose2VideoPipeline as Hair3dPipeline
from src.utils.util import save_videos_grid
from omegaconf import OmegaConf
from HairMapper.hair_mapper_run import bald_head
# face align
def _maybe_align_image(image_path: str, output_size: int, prefer_cuda: bool = True):
"""Align and crop a face image to FFHQ-style using FFHQFaceAlignment if available.
Falls back to simple resize if alignment fails.
Returns an RGB uint8 numpy array of shape (H, W, 3).
"""
try:
ffhq_dir = os.path.join(os.path.dirname(__file__), 'FFHQFaceAlignment')
if ffhq_dir not in sys.path:
sys.path.insert(0, ffhq_dir)
# Lazy imports to avoid hard dependency if user doesn't enable alignment
from lib.landmarks_pytorch import LandmarksEstimation
from align import align_crop_image
# Read image as RGB uint8
img_bgr = cv2.imread(image_path, cv2.IMREAD_COLOR)
if img_bgr is None:
raise RuntimeError(f"Failed to read image: {image_path}")
img = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB).astype('uint8')
device = torch.device('cuda' if prefer_cuda and torch.cuda.is_available() else 'cpu')
le = LandmarksEstimation(type='2D')
img_tensor = torch.tensor(np.transpose(img, (2, 0, 1))).float().to(device)
with torch.no_grad():
landmarks, _ = le.detect_landmarks(img_tensor.unsqueeze(0), detected_faces=None)
if len(landmarks) > 0:
lm = np.asarray(landmarks[0].detach().cpu().numpy())
aligned = align_crop_image(image=img, landmarks=lm, transform_size=output_size)
if aligned is None or aligned.size == 0:
return cv2.resize(img, (output_size, output_size))
return aligned
else:
return cv2.resize(img, (output_size, output_size))
except Exception:
# Silent fallback to simple resize on any failure
img_bgr = cv2.imread(image_path, cv2.IMREAD_COLOR)
img = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB).astype('uint8') if img_bgr is not None else None
if img is None:
raise
return cv2.resize(img, (output_size, output_size))
def log_validation(
vae, tokenizer, image_encoder, denoising_unet,
args, device, logger, cc_projection,
controlnet, hair_encoder, feature_extractor=None
):
"""
Run inference on validation pairs and save generated videos.
"""
logger.info("Starting validation inference...")
# Initialize inference pipeline
pipeline = Hair3dPipeline.from_pretrained(
args.pretrained_model_name_or_path,
image_encoder=image_encoder,
feature_extractor=feature_extractor,
controlnet=controlnet,
vae=vae,
tokenizer=tokenizer,
denoising_unet=denoising_unet,
safety_checker=None,
revision=args.revision,
torch_dtype=torch.float16 if args.use_fp16 else torch.float32,
).to(device)
pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config)
pipeline.set_progress_bar_config(disable=True)
# Create output directory
output_dir = os.path.join(args.output_dir, "validation")
os.makedirs(output_dir, exist_ok=True)
print(output_dir)
# Generate camera trajectory
x_coords = [0.4 * np.sin(2 * np.pi * i / 120) for i in range(60)]
y_coords = [-0.05 + 0.3 * np.cos(2 * np.pi * i / 120) for i in range(60)]
X = [x_coords[0]]
Y = [y_coords[0]]
for i in range(20):
X.append(x_coords[i * 3 + 2])
Y.append(y_coords[i * 3 + 2])
x_tensor = torch.tensor(X, dtype=torch.float32).unsqueeze(1).to(device)
y_tensor = torch.tensor(Y, dtype=torch.float32).unsqueeze(1).to(device)
# # Load reference images
# id_image = cv2.cvtColor(cv2.imread(args.validation_ids[0]), cv2.COLOR_BGR2RGB)
# id_image = cv2.resize(id_image, (512, 512))
# Load reference images (optionally align)
align_enabled = getattr(args, 'align_before_infer', True)
align_size = getattr(args, 'align_size', 1024)
prefer_cuda = True if device.type == 'cuda' else False
if align_enabled:
id_image = _maybe_align_image(args.validation_ids[0], output_size=align_size, prefer_cuda=prefer_cuda)
else:
id_image = cv2.cvtColor(cv2.imread(args.validation_ids[0]), cv2.COLOR_BGR2RGB)
id_image = cv2.resize(id_image, (512, 512))
# ===== ���� HairMapper ͺͷ�� =====
temp_bald_path = os.path.join(args.output_dir, "bald_id.png")
cv2.imwrite(temp_bald_path, cv2.cvtColor(id_image, cv2.COLOR_RGB2BGR)) # �������ͼ
bald_head(temp_bald_path, temp_bald_path) # ͺͷ�������DZ���
# ���¼���ͺͷͼ�� (RGB)
id_image = cv2.cvtColor(cv2.imread(temp_bald_path), cv2.COLOR_BGR2RGB)
id_image = cv2.resize(id_image, (512, 512))
id_list = [id_image for _ in range(12)]
if align_enabled:
hair_image = _maybe_align_image(args.validation_hairs[0], output_size=align_size, prefer_cuda=prefer_cuda)
prompt_img = _maybe_align_image(args.validation_ids[0], output_size=align_size, prefer_cuda=prefer_cuda)
else:
hair_image = cv2.cvtColor(cv2.imread(args.validation_hairs[0]), cv2.COLOR_BGR2RGB)
hair_image = cv2.resize(hair_image, (512, 512))
prompt_img = cv2.cvtColor(cv2.imread(args.validation_ids[0]), cv2.COLOR_BGR2RGB)
prompt_img = cv2.resize(prompt_img, (512, 512))
hair_image = cv2.resize(hair_image, (512, 512))
prompt_img = cv2.resize(prompt_img, (512, 512))
prompt_img = [prompt_img]
# Perform inference and save videos
for idx in range(args.num_validation_images):
result = pipeline(
prompt="",
negative_prompt="",
num_inference_steps=30,
guidance_scale=1.5,
width=512,
height=512,
controlnet_condition=id_list,
controlnet_conditioning_scale=1.0,
generator=torch.Generator(device).manual_seed(args.seed),
ref_image=hair_image,
prompt_img=prompt_img,
reference_encoder=hair_encoder,
poses=None,
x=x_tensor,
y=y_tensor,
video_length=21,
context_frames=12,
)
video = torch.cat([result.videos, result.videos], dim=0)
video_path = os.path.join(output_dir, f"generated_video_{idx}.mp4")
save_videos_grid(video, video_path, n_rows=5, fps=24)
logger.info(f"Saved generated video: {video_path}")
def parse_args():
parser = argparse.ArgumentParser(
description="Inference script for 3D hairstyle generation"
)
parser.add_argument(
"--pretrained_model_name_or_path", type=str, required=True,
help="Path or ID of the pretrained pipeline"
)
parser.add_argument(
"--model_path", type=str, required=True,
help="Path or ID of the pretrained pipeline"
)
parser.add_argument(
"--image_encoder", type=str, required=True,
help="Path or ID of the CLIP vision encoder"
)
parser.add_argument(
"--controlnet_model_name_or_path", type=str, default=None,
help="Path or ID of the ControlNet model"
)
parser.add_argument(
"--revision", type=str, default=None,
help="Model revision or Git reference"
)
parser.add_argument(
"--output_dir", type=str, default="inference_output",
help="Directory to save inference results"
)
parser.add_argument(
"--seed", type=int, default=42,
help="Random seed for reproducibility"
)
parser.add_argument(
"--num_validation_images", type=int, default=3,
help="Number of videos to generate per input pair"
)
parser.add_argument(
"--validation_ids", type=str, nargs='+', required=True,
help="Path(s) to identity conditioning images"
)
parser.add_argument(
"--validation_hairs", type=str, nargs='+', required=True,
help="Path(s) to hairstyle reference images"
)
parser.add_argument(
"--use_fp16", action="store_true",
help="Enable fp16 inference"
)
parser.add_argument(
"--align_before_infer", action="store_true", default=True,
help="Align and crop input images to FFHQ style before inference"
)
parser.add_argument(
"--align_size", type=int, default=1024,
help="Output size for aligned images when alignment is enabled"
)
return parser.parse_args()
def main():
args = parse_args()
# Setup device and logger
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger = logging.getLogger(__name__)
# Set random seed
torch.manual_seed(args.seed)
if device.type == "cuda":
torch.cuda.manual_seed_all(args.seed)
# Load models
tokenizer = AutoTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer",
revision=args.revision
)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
args.image_encoder,
revision=args.revision
).to(device)
vae = AutoencoderKL.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="vae",
revision=args.revision
).to(device)
infer_config = OmegaConf.load('./configs/inference/inference_v2.yaml')
unet2 = UNet2DConditionModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder="unet", use_safetensors=True, revision=args.revision,
torch_dtype=torch.float16
).to(device)
conv_in_8 = torch.nn.Conv2d(8, unet2.conv_in.out_channels, kernel_size=unet2.conv_in.kernel_size,
padding=unet2.conv_in.padding)
conv_in_8.requires_grad_(False)
unet2.conv_in.requires_grad_(False)
torch.nn.init.zeros_(conv_in_8.weight)
conv_in_8.weight[:, :4, :, :].copy_(unet2.conv_in.weight)
conv_in_8.bias.copy_(unet2.conv_in.bias)
unet2.conv_in = conv_in_8
# Load or initialize ControlNet
controlnet = ControlNetModel.from_unet(unet2).to(device)
# state_dict2 = torch.load(os.path.join(args.model_path, "pytorch_model.bin"), map_location=torch.device('cpu'))
# state_dict2 = torch.load(args.model_path, map_location=torch.device('cpu'))
state_dict2 = torch.load(os.path.join(args.model_path, "pytorch_model.bin"), map_location=torch.device('cpu'))
controlnet.load_state_dict(state_dict2, strict=False)
# Load 3D UNet motion module
prefix = "motion_module"
ckpt_num = "4140000"
save_path = os.path.join(args.model_path, f"{prefix}-{ckpt_num}.pth")
denoising_unet = UNet3DConditionModel.from_pretrained_2d(
args.pretrained_model_name_or_path,
save_path,
subfolder="unet",
unet_additional_kwargs=infer_config.unet_additional_kwargs,
).to(device)
# Load projection and hair encoder
cc_projection = CCProjection().to(device)
state_dict3 = torch.load(os.path.join(args.model_path, "pytorch_model_1.bin"), map_location=torch.device('cpu'))
cc_projection.load_state_dict(state_dict3, strict=False)
from ref_encoder.reference_unet import ref_unet
Hair_Encoder = ref_unet.from_pretrained(
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, low_cpu_mem_usage=False,
device_map=None, ignore_mismatched_sizes=True
).to(device)
state_dict2 = torch.load(os.path.join(args.model_path, "pytorch_model_2.bin"), map_location=torch.device('cpu'))
# state_dict2 = torch.load(os.path.join('/home/jichao.zhang/code/3dhair/train_sv3d/checkpoint-30000/', "pytorch_model.bin"))
Hair_Encoder.load_state_dict(state_dict2, strict=False)
# Run validation inference
log_validation(
vae, tokenizer, image_encoder, denoising_unet,
args, device, logger,
cc_projection, controlnet, Hair_Encoder
)
if __name__ == "__main__":
main()
|