File size: 11,883 Bytes
b082906
 
 
 
 
 
 
 
91cf555
b082906
 
 
 
 
 
9cacbcb
b082906
 
 
 
 
 
3a7d9b9
b082906
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91cf555
 
 
 
 
c037455
 
 
 
 
 
91cf555
b082906
 
 
 
 
 
 
 
 
06fb4f5
b082906
 
 
 
be1fe7c
53f41ef
 
b082906
 
 
 
be1fe7c
b082906
53f41ef
b082906
53f41ef
b082906
53f41ef
b082906
 
be1fe7c
 
 
 
 
 
 
 
b082906
 
be1fe7c
 
 
b082906
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
092cd6c
b082906
 
 
 
 
092cd6c
b082906
092cd6c
 
b082906
 
 
092cd6c
 
 
df93a9a
 
b082906
 
 
 
df93a9a
c6ccfb7
 
 
 
 
b082906
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.model_selection import train_test_split
import tensorflow as tf
from tensorflow.keras.models import Sequential, Model
from tensorflow.keras.layers import LSTM, Dense, Input, MultiHeadAttention, LayerNormalization, GlobalAveragePooling1D
from tensorflow.keras.optimizers import Adam
import joblib
import os
import openai
from stable_baselines3 import PPO
from stable_baselines3.common.vec_env import DummyVecEnv
import gym
from gym import spaces

# Set page config
st.set_page_config(page_title="Advanced Dynamic Game Pricing App", layout="wide")

# OpenAI API key
openai.api_key = "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"

# Function to load or create data
@st.cache_data
def load_data():
    if os.path.exists('game_data.csv'):
        return pd.read_csv('game_data.csv')
    else:
        # Sample dataset with time series data
        data = {
            'game_id': np.repeat(range(1, 21), 50),
            'date': np.tile(pd.date_range(start='2020-01-01', periods=50), 20),
            'genre': np.repeat(np.random.choice(['RPG', 'FPS', 'Strategy', 'Puzzle', 'Sports'], 20), 50),
            'region': np.repeat(np.random.choice(['Africa', 'NA', 'EU', 'Asia', 'SA'], 20), 50),
            'demand_index': np.random.uniform(0.1, 1.0, 1000),
            'competitor_price': np.random.uniform(20, 60, 1000),
            'past_sales': np.random.randint(100, 1000, 1000),
            'price': np.random.uniform(25, 65, 1000)
        }
        df = pd.DataFrame(data)
        df.to_csv('game_data.csv', index=False)
        return df

# Load data
df = load_data()

# LSTM Model
def create_lstm_model(input_shape):
    model = Sequential([
        LSTM(64, return_sequences=True, input_shape=input_shape),
        LSTM(32),
        Dense(1)
    ])
    model.compile(optimizer='adam', loss='mse')
    return model

# Transformer Model
def create_transformer_model(input_shape):
    inputs = Input(shape=input_shape)
    x = transformer_encoder(inputs, head_size=256, num_heads=4, ff_dim=4, dropout=0.1)
    x = GlobalAveragePooling1D()(x)
    outputs = Dense(1)(x)
    model = Model(inputs, outputs)
    
    # Compile the model
    model.compile(optimizer='adam', loss='mse')
    
    return model

def transformer_encoder(inputs, head_size, num_heads, ff_dim, dropout=0):
    x = MultiHeadAttention(key_dim=head_size, num_heads=num_heads, dropout=dropout)(inputs, inputs)
    x = LayerNormalization(epsilon=1e-6)(x)
    res = x + inputs
    x = Dense(ff_dim, activation="relu")(res)
    x = Dense(inputs.shape[-1])(x)
    return LayerNormalization(epsilon=1e-6)(x + res)

# RL Environment
class PricingEnv(gym.Env):
    def __init__(self, data):
        super(PricingEnv, self).__init__()
        self.data = data
        self.current_step = 0
        self.max_steps = len(data) - 1
        self.action_space = gym.spaces.Box(low=0, high=100, shape=(1,), dtype=np.float32)
        self.observation_space = gym.spaces.Box(low=0, high=np.inf, shape=(6,), dtype=np.float32)

    def step(self, action):
        reward = self._get_reward(action)
        self.current_step += 1
        done = self.current_step >= self.max_steps
        obs = self._get_observation()
        return obs, reward, done, {}  # Removed the 'truncated' flag for compatibility

    def reset(self):
        self.current_step = 0
        return self._get_observation()

    def _get_observation(self):
        if self.current_step > self.max_steps:
            # If we've gone past the end of the data, return the last valid observation
            step = self.max_steps
        else:
            step = self.current_step
        
        obs = self.data.iloc[step][['demand_index', 'competitor_price', 'past_sales', 'genre_encoded', 'region_encoded']].values
        return np.append(obs, step)

    def _get_reward(self, action):
        if self.current_step > self.max_steps:
            return 0  # Or some other appropriate value for going out of bounds
        
        price = action[0]
        actual_price = self.data.iloc[self.current_step]['price']
        return -abs(price - actual_price)

# Function to get LLM analysis
def get_llm_analysis(game_info, market_info):
    prompt = f"""
    Analyze the following game and market information for pricing strategy:
    
    Game Information:
    {game_info}
    
    Market Information:
    {market_info}
    
    Based on this information, suggest a pricing strategy and any factors that might influence the game's price.
    Provide your analysis in a structured format with clear recommendations.
    """
    
    response = openai.ChatCompletion.create(
        model="gpt-4",
        messages=[
            {"role": "system", "content": "You are an expert in game pricing and market trends."},
            {"role": "user", "content": prompt}
        ],
        max_tokens=300,
        n=1,
        stop=None,
        temperature=0.7,
    )
    
    return response['choices'][0]['message']['content']

# Sidebar for navigation
page = st.sidebar.selectbox("Choose a page", ["Data Explorer", "Model Training", "Price Prediction"])

if page == "Data Explorer":
    st.title("Data Explorer")
    st.write(df)
    
    st.subheader("Data Statistics")
    st.write(df.describe())
    
    st.subheader("Data Visualization")
    fig, ax = plt.subplots(1, 2, figsize=(15, 5))
    ax[0].scatter(df['competitor_price'], df['price'])
    ax[0].set_xlabel('Competitor Price')
    ax[0].set_ylabel('Price')
    ax[0].set_title('Competitor Price vs Price')
    
    ax[1].scatter(df['demand_index'], df['price'])
    ax[1].set_xlabel('Demand Index')
    ax[1].set_ylabel('Price')
    ax[1].set_title('Demand Index vs Price')
    
    st.pyplot(fig)

elif page == "Model Training":
    st.title("Model Training")
    
    # Data preprocessing
    le_genre = LabelEncoder()
    df['genre_encoded'] = le_genre.fit_transform(df['genre'])
    
    le_region = LabelEncoder()
    df['region_encoded'] = le_region.fit_transform(df['region'])
    
    features = ['genre_encoded', 'region_encoded', 'demand_index', 'competitor_price', 'past_sales']
    X = df[features]
    y = df['price']
    
    scaler = StandardScaler()
    X_scaled = scaler.fit_transform(X)
    
    # Reshape data for LSTM
    X_lstm = X_scaled.reshape((X_scaled.shape[0], 1, X_scaled.shape[1]))
    
    # Split the data
    X_train, X_test, y_train, y_test = train_test_split(X_lstm, y, test_size=0.2, random_state=42)
    
    # Model training
    if st.button("Train Models"):
        with st.spinner("Training LSTM model..."):
            lstm_model = create_lstm_model((1, X_train.shape[2]))
            lstm_history = lstm_model.fit(X_train, y_train, epochs=50, batch_size=32, validation_split=0.2, verbose=0)
        
        with st.spinner("Training Transformer model..."):
            transformer_model = create_transformer_model((1, X_train.shape[2]))
            transformer_history = transformer_model.fit(X_train, y_train, epochs=50, batch_size=32, validation_split=0.2, verbose=0)
        
        with st.spinner("Training RL model..."):
            env = DummyVecEnv([lambda: PricingEnv(df)])
            rl_model = PPO("MlpPolicy", env, verbose=0)
            rl_model.learn(total_timesteps=10000)
        
        st.success("All models trained successfully!")
        
        # Plot training history
        fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 5))
        ax1.plot(lstm_history.history['loss'], label='LSTM Training Loss')
        ax1.plot(lstm_history.history['val_loss'], label='LSTM Validation Loss')
        ax1.set_xlabel('Epoch')
        ax1.set_ylabel('Loss')
        ax1.legend()
        ax1.set_title('LSTM Training History')
        
        ax2.plot(transformer_history.history['loss'], label='Transformer Training Loss')
        ax2.plot(transformer_history.history['val_loss'], label='Transformer Validation Loss')
        ax2.set_xlabel('Epoch')
        ax2.set_ylabel('Loss')
        ax2.legend()
        ax2.set_title('Transformer Training History')
        
        st.pyplot(fig)
        
        # Save models and preprocessing objects
        lstm_model.save('lstm_model.h5')
        transformer_model.save('transformer_model.h5')
        rl_model.save('rl_model')
        joblib.dump(scaler, 'scaler.pkl')
        joblib.dump(le_genre, 'le_genre.pkl')
        joblib.dump(le_region, 'le_region.pkl')
        
        st.info("Models and preprocessing objects saved.")

elif page == "Price Prediction":
    st.title("Price Prediction")
    
    # Load saved models and objects
    if os.path.exists('lstm_model.h5') and os.path.exists('transformer_model.h5') and os.path.exists('rl_model.zip'):
        lstm_model = tf.keras.models.load_model('lstm_model.h5')
        transformer_model = tf.keras.models.load_model('transformer_model.h5')
        rl_model = PPO.load('rl_model')
        scaler = joblib.load('scaler.pkl')
        le_genre = joblib.load('le_genre.pkl')
        le_region = joblib.load('le_region.pkl')
        
        # User input
        genre = st.selectbox("Select Genre", le_genre.classes_)
        region = st.selectbox("Select Region", le_region.classes_)
        demand_index = st.slider("Demand Index", 0.1, 1.0, 0.5)
        competitor_price = st.slider("Competitor Price", 20.0, 60.0, 40.0)
        past_sales = st.slider("Past Sales", 100, 1000, 500)
        
        # Prepare input for prediction
        input_data = np.array([
            le_genre.transform([genre])[0],
            le_region.transform([region])[0],
            demand_index,
            competitor_price,
            past_sales
        ])
        
        input_scaled = scaler.transform(input_data.reshape(1, -1)).flatten()
        input_with_step = np.append(input_scaled, 0)  # Add a step value (0 for prediction)
        
        # Make predictions
        if st.button("Predict Price"):
            lstm_price = lstm_model.predict(input_scaled.reshape(1, 1, -1))[0][0]
            transformer_price = transformer_model.predict(input_scaled.reshape(1, 1, -1))[0][0]
            rl_price = rl_model.predict(input_with_step)[0]
            # Extract the single float value from the RL prediction
            rl_price_value = rl_price.item() if isinstance(rl_price, np.ndarray) else rl_price
            
            # Display results
            st.success(f"LSTM Predicted Price: ${lstm_price:.2f}")
            st.success(f"Transformer Predicted Price: ${transformer_price:.2f}")
            st.success(f"RL Predicted Price: ${rl_price_value:.2f}")

            # Get LLM analysis
            game_info = f"Genre: {genre}, Region: {region}, Past Sales: {past_sales}"
            market_info = f"Demand Index: {demand_index}, Competitor Price: {competitor_price}"
            llm_analysis = get_llm_analysis(game_info, market_info)
            
            st.subheader("LLM Pricing Analysis:")
            st.write(llm_analysis)
            
            # Visualize the predictions
            fig, ax = plt.subplots(figsize=(10, 5))
            models = ['LSTM', 'Transformer', 'RL', 'Competitor']
            prices = [lstm_price, transformer_price, rl_price, competitor_price]
            ax.bar(models, prices)
            ax.set_ylabel('Price ($)')
            ax.set_title('Price Comparison')
            st.pyplot(fig)
            
            st.info("Consider all model predictions and the LLM analysis to make a final pricing decision.")
    else:
        st.warning("Please train the models first!")

st.sidebar.info("This app demonstrates advanced dynamic pricing for game codes using LSTMs, Transformers, RL, and LLM analysis.")