|
import os |
|
import torch |
|
import argparse |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import matplotlib.pyplot as plt |
|
|
|
from PIL import Image |
|
from model import FoundModel |
|
from misc import load_config |
|
from torchvision import transforms as T |
|
|
|
|
|
import gradio as gr |
|
|
|
NORMALIZE = T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) |
|
CACHE = True |
|
|
|
def blend_images(bg, fg, alpha=0.5): |
|
fg = fg.convert('RGBA') |
|
bg = bg.convert('RGBA') |
|
blended = Image.blend(bg, fg, alpha=alpha) |
|
|
|
return blended |
|
|
|
|
|
def predict(img_input): |
|
|
|
config = "configs/found_DUTS-TR.yaml" |
|
model_weights = "data/weights/decoder_weights.pt" |
|
|
|
|
|
config = load_config(config) |
|
|
|
|
|
|
|
model = FoundModel(vit_model=config.model["pre_training"], |
|
vit_arch=config.model["arch"], |
|
vit_patch_size=config.model["patch_size"], |
|
enc_type_feats=config.found["feats"], |
|
bkg_type_feats=config.found["feats"], |
|
bkg_th=config.found["bkg_th"]) |
|
|
|
model.decoder_load_weights(model_weights) |
|
model.eval() |
|
print(f"Model {model_weights} loaded correctly.") |
|
|
|
|
|
img_pil = Image.open(img_input) |
|
img = img_pil.convert("RGB") |
|
|
|
t = T.Compose([T.ToTensor(), NORMALIZE]) |
|
img_t = t(img)[None,:,:,:] |
|
inputs = img_t |
|
|
|
|
|
with torch.no_grad(): |
|
preds, _, _, _ = model.forward_step(inputs, for_eval=True) |
|
|
|
|
|
sigmoid = nn.Sigmoid() |
|
h, w = img_t.shape[-2:] |
|
preds_up = F.interpolate( |
|
preds, scale_factor=model.vit_patch_size, mode="bilinear", align_corners=False |
|
)[..., :h, :w] |
|
preds_up = ( |
|
(sigmoid(preds_up.detach()) > 0.5).squeeze(0).float() |
|
) |
|
|
|
return blend_images(img_pil, preds_up) |
|
|
|
|
|
title = 'FOUND' |
|
description = 'Gradio Demo accompanying paper "Unsupervised Object Localization: Observing the Background to Discover Objects"\n \ |
|
The app is running CPU-only, times are therefore .\n' |
|
article = """<h2 align="center">Unsupervised Object Localization: Observing the Background to Discover Objects </h2> |
|
<h1 align="center"> FOUND </h1> |
|
""" |
|
examples = ["data/examples/VOC_000030.jpg"] |
|
|
|
|
|
iface = gr.Interface(fn=predict, |
|
title=title, |
|
description=description, |
|
article=article, |
|
inputs=gr.Image(type='filepath'), |
|
outputs=gr.Image(label="Object localization", type="pil"), |
|
examples=examples, |
|
cache_examples=CACHE |
|
) |
|
|
|
iface.launch(show_error=True, enable_queue=True, inline=True) |
|
|
|
|
|
|