File size: 8,147 Bytes
25cae60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import re
import os
import cv2
import yaml
import math
import random
import scipy.ndimage
import numpy as np

import torch
import torch.nn.functional as F

from typing import List
from torchvision import transforms as T

from bilateral_solver import bilateral_solver_output


loader = yaml.SafeLoader
loader.add_implicit_resolver(
    u'tag:yaml.org,2002:float',
    re.compile(u'''^(?:
     [-+]?(?:[0-9][0-9_]*)\\.[0-9_]*(?:[eE][-+]?[0-9]+)?
    |[-+]?(?:[0-9][0-9_]*)(?:[eE][-+]?[0-9]+)
    |\\.[0-9_]+(?:[eE][-+][0-9]+)?
    |[-+]?[0-9][0-9_]*(?::[0-5]?[0-9])+\\.[0-9_]*
    |[-+]?\\.(?:inf|Inf|INF)
    |\\.(?:nan|NaN|NAN))$''', re.X),
    list(u'-+0123456789.'))

class Struct:
    def __init__(self, **entries): 
        self.__dict__.update(entries)

def load_config(config_file):
    with open(config_file, errors='ignore') as f:
        # conf = yaml.safe_load(f)  # load config
        conf = yaml.load(f, Loader=loader)
    print('hyperparameters: ' + ', '.join(f'{k}={v}' for k, v in conf.items()))
        
    #TODO yaml_save(save_dir / 'config.yaml', conf)
    return Struct(**conf)

def set_seed(seed: int) -> None:
    """
    Set all seeds to make results reproducible
    """
    # env
    os.environ["PYTHONHASHSEED"] = str(seed)

    # python
    random.seed(seed)

    # numpy
    np.random.seed(seed)

    # torch
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    torch.backends.cudnn.deterministic = True

def IoU(mask1, mask2):
    """
    Code adapted from TokenCut: https://github.com/YangtaoWANG95/TokenCut
    """
    mask1, mask2 = (mask1 > 0.5).to(torch.bool), (mask2 > 0.5).to(torch.bool)
    intersection = torch.sum(mask1 * (mask1 == mask2), dim=[-1, -2]).squeeze()
    union = torch.sum(mask1 + mask2, dim=[-1, -2]).squeeze()
    return (intersection.to(torch.float) / union).mean().item()

def batch_apply_bilateral_solver(data,
                                 masks,
                                 get_all_cc=True,
                                 shape=None):

    cnt_bs = 0
    masks_bs = []
    inputs, init_imgs, gt_labels, img_path = data

    for id in range(inputs.shape[0]):
        _, bs_mask, use_bs = apply_bilateral_solver(
            mask=masks[id].squeeze().cpu().numpy(),
            img=init_imgs[id],
            img_path=img_path[id],
            im_fullsize=False,
            # Careful shape should be opposed
            shape=(gt_labels.shape[-1], gt_labels.shape[-2]),
            get_all_cc=get_all_cc,
        )
        cnt_bs += use_bs

        # use the bilateral solver output if IoU > 0.5
        if use_bs:
            if shape is None:
                shape = masks.shape[-2:]
            # Interpolate to downsample the mask back
            bs_ds = F.interpolate(
                torch.Tensor(bs_mask).unsqueeze(0).unsqueeze(0),
                shape,  # TODO check here
                mode="bilinear",
                align_corners=False,
            )
            masks_bs.append(bs_ds.bool().cuda().squeeze()[None, :, :])
        else:
            # Use initial mask
            masks_bs.append(masks[id].cuda().squeeze()[None, :, :])
    
    return torch.cat(masks_bs).squeeze(), cnt_bs


def apply_bilateral_solver(
    mask,
    img,
    img_path,
    shape,
    im_fullsize=False,
    get_all_cc=False,
    bs_iou_threshold: float = 0.5,
    reshape: bool = True,
):
    # Get initial image in the case of using full image
    img_init = None
    if not im_fullsize:
        # Use the image given by dataloader
        shape = (img.shape[-1], img.shape[-2])
        t = T.ToPILImage()
        img_init = t(img)

    if reshape:
        # Resize predictions to image size
        resized_mask = cv2.resize(mask, shape)
        sel_obj_mask = resized_mask
    else:
        resized_mask = mask
        sel_obj_mask = mask

    # Apply bilinear solver
    _, binary_solver = bilateral_solver_output(
        img_path,
        resized_mask,
        img=img_init,
        sigma_spatial=16,
        sigma_luma=16,
        sigma_chroma=8,
        get_all_cc=get_all_cc,
    )

    mask1 = torch.from_numpy(resized_mask).cuda()
    mask2 = torch.from_numpy(binary_solver).cuda().float()

    use_bs = 0
    # If enough overlap, use BS output
    if IoU(mask1, mask2) > bs_iou_threshold:
        sel_obj_mask = binary_solver.astype(float)
        use_bs = 1

    return resized_mask, sel_obj_mask, use_bs

def get_bbox_from_segmentation_labels(
    segmenter_predictions: torch.Tensor,
    initial_image_size: torch.Size,
    scales: List[int],
) -> np.array:
    """
    Find the largest connected component in foreground, extract its bounding box
    """
    objects, num_objects = scipy.ndimage.label(segmenter_predictions)

    # find biggest connected component
    all_foreground_labels = objects.flatten()[objects.flatten() != 0]
    most_frequent_label = np.bincount(all_foreground_labels).argmax()
    mask = np.where(objects == most_frequent_label)
    # Add +1 because excluded max
    ymin, ymax = min(mask[0]), max(mask[0]) + 1
    xmin, xmax = min(mask[1]), max(mask[1]) + 1

    if initial_image_size == segmenter_predictions.shape:
        # Masks are already upsampled
        pred = [xmin, ymin, xmax, ymax]
    else:
        # Rescale to image size
        r_xmin, r_xmax = scales[1] * xmin, scales[1] * xmax
        r_ymin, r_ymax = scales[0] * ymin, scales[0] * ymax
        pred = [r_xmin, r_ymin, r_xmax, r_ymax]

    # Check not out of image size (used when padding)
    if initial_image_size:
        pred[2] = min(pred[2], initial_image_size[1])
        pred[3] = min(pred[3], initial_image_size[0])

    return np.asarray(pred)


def bbox_iou(
    box1: np.array,
    box2: np.array,
    x1y1x2y2: bool = True,
    GIoU: bool = False,
    DIoU: bool = False,
    CIoU: bool = False,
    eps: float = 1e-7,
):
    # https://github.com/ultralytics/yolov5/blob/develop/utils/general.py
    # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
    box2 = box2.T

    # Get the coordinates of bounding boxes
    if x1y1x2y2:  # x1, y1, x2, y2 = box1
        b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
        b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
    else:  # transform from xywh to xyxy
        b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
        b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
        b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
        b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2

    # Intersection area
    inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * (
        torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)
    ).clamp(0)

    # Union Area
    w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
    w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
    union = w1 * h1 + w2 * h2 - inter + eps

    iou = inter / union
    if GIoU or DIoU or CIoU:
        cw = torch.max(b1_x2, b2_x2) - torch.min(
            b1_x1, b2_x1
        )  # convex (smallest enclosing box) width
        ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1)  # convex height
        if CIoU or DIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
            c2 = cw**2 + ch**2 + eps  # convex diagonal squared
            rho2 = (
                (b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2
                + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2
            ) / 4  # center distance squared
            if DIoU:
                return iou - rho2 / c2  # DIoU
            elif (
                CIoU
            ):  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
                v = (4 / math.pi**2) * torch.pow(
                    torch.atan(w2 / h2) - torch.atan(w1 / h1), 2
                )
                with torch.no_grad():
                    alpha = v / (v - iou + (1 + eps))
                return iou - (rho2 / c2 + v * alpha)  # CIoU
        else:  # GIoU https://arxiv.org/pdf/1902.09630.pdf
            c_area = cw * ch + eps  # convex area
            return iou - (c_area - union) / c_area  # GIoU
    else:
        return iou  # IoU