Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from PIL import Image | |
import requests | |
from transformers import AutoProcessor, AutoModelForCausalLM | |
# Model ve işlemciyi yükle | |
model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-base-mini", torch_dtype=torch.float32, trust_remote_code=True) | |
def process_image(image, task): | |
# Girdiyi hazırla | |
inputs = processor(text=task, images=image, return_tensors="pt") | |
# Giriş verilerini half precision'a dönüştür | |
inputs = {k: v.half() if isinstance(v, torch.Tensor) else v for k, v in inputs.items()} | |
# Çıktıyı oluştur | |
generated_ids = model.generate( | |
input_ids=inputs["input_ids"], | |
pixel_values=inputs["pixel_values"], | |
max_new_tokens=1024, | |
num_beams=3, | |
do_sample=False | |
) | |
# Sonucu işle | |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] | |
parsed_answer = processor.post_process_generation(generated_text, task=task, image_size=(image.width, image.height)) | |
return parsed_answer | |
# Gradio arayüzü | |
iface = gr.Interface( | |
fn=process_image, | |
inputs=[ | |
gr.Image(type="pil"), | |
gr.Radio(["<IC>", "<OD>", "<VQA>", "<IS>"], label="Task") | |
], | |
outputs="text", | |
title="Florence-2 Image Processing", | |
description="Upload an image and select a task to process with Florence-2." | |
) | |
iface.launch() |