Spaces:
Paused
Paused
File size: 36,120 Bytes
11e4904 959ee6e 58e6c10 11e4904 959ee6e 11e4904 959ee6e 11e4904 959ee6e 11e4904 959ee6e 58e6c10 959ee6e e1b4f11 e1d7932 959ee6e e1d7932 e1b4f11 959ee6e e1b4f11 959ee6e e1b4f11 959ee6e e1b4f11 e1d7932 e1b4f11 959ee6e 7d762a5 959ee6e 11e4904 959ee6e 58e6c10 11e4904 959ee6e 11e4904 959ee6e 11e4904 58e6c10 11e4904 96104e4 959ee6e 11e4904 58e6c10 11e4904 959ee6e 11e4904 959ee6e 7d762a5 959ee6e 7d762a5 959ee6e 54760e3 959ee6e e1b4f11 959ee6e e1b4f11 959ee6e 538326f 959ee6e 538326f 959ee6e 538326f 959ee6e 538326f 7d762a5 959ee6e 11e4904 96104e4 e1b4f11 959ee6e e1b4f11 959ee6e e1b4f11 959ee6e e1b4f11 959ee6e e1b4f11 538326f e1b4f11 959ee6e e1b4f11 959ee6e e1b4f11 959ee6e e1b4f11 e303e0b e1b4f11 e303e0b e1b4f11 959ee6e e1b4f11 e303e0b e1b4f11 96104e4 e1b4f11 7d762a5 58e6c10 959ee6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 |
import csv
import os
from datetime import datetime
from typing import Optional, Union, List
import gradio as gr
from huggingface_hub import HfApi, Repository
from huggingface_hub import login
from optimum_neuron_export import convert
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from apscheduler.schedulers.background import BackgroundScheduler
DATASET_REPO_URL = "https://huggingface.co/datasets/optimum/neuron-exports"
DATA_FILENAME = "exports.csv"
DATA_FILE = os.path.join("data", DATA_FILENAME)
HF_TOKEN = os.getenv("HF_TOKEN") # It's better to use environment variables
DATADIR = "neuron_exports_data"
repo: Optional[Repository] = None
# Uncomment if you want to push to dataset repo with token
# if HF_TOKEN:
# repo = Repository(local_dir=DATADIR, clone_from=DATASET_REPO_URL, token=HF_TOKEN)
# Define transformer tasks and their categories for coloring
TRANSFORMER_TASKS = {
"auto": {"color": "#6b7280", "category": "Auto"},
"feature-extraction": {"color": "#3b82f6", "category": "Feature Extraction"},
"fill-mask": {"color": "#8b5cf6", "category": "NLP"},
"multiple-choice": {"color": "#8b5cf6", "category": "NLP"},
"question-answering": {"color": "#8b5cf6", "category": "NLP"},
"text-classification": {"color": "#8b5cf6", "category": "NLP"},
"token-classification": {"color": "#8b5cf6", "category": "NLP"},
"text-generation": {"color": "#10b981", "category": "Text Generation"},
"text2text-generation": {"color": "#10b981", "category": "Text Generation"},
"audio-classification": {"color": "#f59e0b", "category": "Audio"},
"automatic-speech-recognition": {"color": "#f59e0b", "category": "Audio"},
"audio-frame-classification": {"color": "#f59e0b", "category": "Audio"},
"audio-xvector": {"color": "#f59e0b", "category": "Audio"},
"image-classification": {"color": "#ef4444", "category": "Vision"},
"object-detection": {"color": "#ef4444", "category": "Vision"},
"semantic-segmentation": {"color": "#ef4444", "category": "Vision"},
"zero-shot-image-classification": {"color": "#ec4899", "category": "Multimodal"},
"sentence-similarity": {"color": "#06b6d4", "category": "Similarity"},
}
# Define diffusion pipeline types
DIFFUSION_PIPELINES = {
"text-to-image": {"color": "#ec4899", "category": "Stable Diffusion"},
"image-to-image": {"color": "#ec4899", "category": "Stable Diffusion"},
"inpaint": {"color": "#ec4899", "category": "Stable Diffusion"},
"instruct-pix2pix": {"color": "#ec4899", "category": "Stable Diffusion"},
"latent-consistency": {"color": "#8b5cf6", "category": "Latent Consistency"},
"stable-diffusion": {"color": "#10b981", "category": "Stable Diffusion"},
"stable-diffusion-xl": {"color": "#10b981", "category": "Stable Diffusion XL"},
"stable-diffusion-xl-img2img": {"color": "#10b981", "category": "Stable Diffusion XL"},
"stable-diffusion-xl-inpaint": {"color": "#10b981", "category": "Stable Diffusion XL"},
"controlnet": {"color": "#f59e0b", "category": "ControlNet"},
"controlnet-xl": {"color": "#f59e0b", "category": "ControlNet XL"},
"pixart-alpha": {"color": "#ef4444", "category": "PixArt"},
"pixart-sigma": {"color": "#ef4444", "category": "PixArt"},
"flux": {"color": "#06b6d4", "category": "Flux"},
}
TAGS = {
"Feature Extraction": {"color": "#3b82f6", "category": "Feature Extraction"},
"NLP": {"color": "#8b5cf6", "category": "NLP"},
"Text Generation": {"color": "#10b981", "category": "Text Generation"},
"Audio": {"color": "#f59e0b", "category": "Audio"},
"Vision": {"color": "#ef4444", "category": "Vision"},
"Multimodal": {"color": "#ec4899", "category": "Multimodal"},
"Similarity": {"color": "#06b6d4", "category": "Similarity"},
"Stable Diffusion": {"color": "#ec4899", "category": "Stable Diffusion"},
"Stable Diffusion XL": {"color": "#10b981", "category": "Stable Diffusion XL"},
"ControlNet": {"color": "#f59e0b", "category": "ControlNet"},
"ControlNet XL": {"color": "#f59e0b", "category": "ControlNet XL"},
"PixArt": {"color": "#ef4444", "category": "PixArt"},
"Latent Consistency": {"color": "#8b5cf6", "category": "Latent Consistency"},
"Flux": {"color": "#06b6d4", "category": "Flux"},
}
# UPDATED: New choices for the Pull Request destination UI component
DEST_NEW_NEURON_REPO = "Create new Neuron-optimized repository"
DEST_CACHE_REPO = "Create a PR in the cache repository"
DEST_CUSTOM_REPO = "Create a PR in a custom repository"
PR_DESTINATION_CHOICES = [
DEST_NEW_NEURON_REPO,
DEST_CACHE_REPO,
DEST_CUSTOM_REPO
]
# Get all tasks and pipelines for dropdowns
ALL_TRANSFORMER_TASKS = list(TRANSFORMER_TASKS.keys())
ALL_DIFFUSION_PIPELINES = list(DIFFUSION_PIPELINES.keys())
def create_task_tag(task: str) -> str:
"""Create a colored HTML tag for a task"""
if task in TRANSFORMER_TASKS:
color = TRANSFORMER_TASKS[task]["color"]
return f'<span style="background-color: {color}; color: white; padding: 2px 6px; border-radius: 12px; font-size: 0.75rem; font-weight: 500; margin: 1px;">{task}</span>'
elif task in DIFFUSION_PIPELINES:
color = DIFFUSION_PIPELINES[task]["color"]
return f'<span style="background-color: {color}; color: white; padding: 2px 6px; border-radius: 12px; font-size: 0.75rem; font-weight: 500; margin: 1px;">{task}</span>'
elif task in TAGS:
color = TAGS[task]["color"]
return f'<span style="background-color: {color}; color: white; padding: 2px 6px; border-radius: 12px; font-size: 0.75rem; font-weight: 500; margin: 1px;">{task}</span>'
else:
return f'<span style="background-color: #6b7280; color: white; padding: 2px 6px; border-radius: 12px; font-size: 0.75rem; font-weight: 500; margin: 1px;">{task}</span>'
def format_tasks_for_table(tasks_str: str) -> str:
"""Convert comma-separated tasks into colored tags"""
tasks = [task.strip() for task in tasks_str.split(',')]
return ' '.join([create_task_tag(task) for task in tasks])
def update_task_dropdown(model_type: str):
"""Update the task dropdown based on selected model type"""
if model_type == "transformers":
return gr.Dropdown(
choices=ALL_TRANSFORMER_TASKS,
value="auto",
label="Task (auto can infer task from model)",
visible=True
)
else: # diffusion
return gr.Dropdown(
choices=ALL_DIFFUSION_PIPELINES,
value="text-to-image",
label="Pipeline Type",
visible=True
)
def toggle_custom_repo_box(pr_destinations: List[str]):
"""Show or hide the custom repo ID textbox based on checkbox selection."""
if DEST_CUSTOM_REPO in pr_destinations:
return gr.Textbox(visible=True)
else:
return gr.Textbox(visible=False, value="")
# UPDATED: Modified function to handle new repository creation workflow
def neuron_export(model_id: str, model_type: str, task_or_pipeline: str,
pr_destinations: List[str], custom_repo_id: str):
if not model_id:
yield "π« Invalid input. Please specify a model name from the hub."
return
log_buffer = ""
def log(msg):
nonlocal log_buffer
# Handle cases where the message from the backend is not a string
if not isinstance(msg, str):
msg = str(msg)
log_buffer += msg + "\n"
return log_buffer
try:
api = HfApi()
yield log(f"π Logging in with provided token...")
if not HF_TOKEN:
yield log("β HF_TOKEN not found. Please set it as an environment variable in the Space secrets.")
return
login(token=HF_TOKEN)
yield log("β
Login successful.")
yield log(f"π Checking access to `{model_id}`...")
try:
api.model_info(model_id, token=HF_TOKEN)
except Exception as e:
yield log(f"β Could not access model `{model_id}`: {e}")
return
yield log(f"β
Model `{model_id}` is accessible. Starting Neuron export...")
# UPDATED: Build pr_options with new structure
pr_options = {
"create_neuron_repo": DEST_NEW_NEURON_REPO in pr_destinations,
"create_cache_pr": DEST_CACHE_REPO in pr_destinations,
"create_custom_pr": DEST_CUSTOM_REPO in pr_destinations,
"custom_repo_id": custom_repo_id.strip() if custom_repo_id else ""
}
# The convert function is a generator, so we iterate through its messages
for status_code, message in convert(api, model_id, task_or_pipeline, model_type,
token=HF_TOKEN, pr_options=pr_options):
if isinstance(message, str):
yield log(message)
else: # It's the final result dictionary
final_message = "π Process finished.\n"
if message.get("neuron_repo"):
final_message += f"ποΈ New Neuron Repository: {message['neuron_repo']}\n"
if message.get("readme_pr"):
final_message += f"π README PR (Original Model): {message['readme_pr']}\n"
if message.get("cache_pr"):
final_message += f"π Cache PR: {message['cache_pr']}\n"
if message.get("custom_pr"):
final_message += f"π Custom PR: {message['custom_pr']}\n"
yield log(final_message)
except Exception as e:
yield log(f"β An unexpected error occurred in the Gradio interface: {e}")
TITLE_IMAGE = """
<div style="display: block; margin-left: auto; margin-right: auto; width: 50%;">
<img src="https://huggingface.co/spaces/optimum/neuron-export/resolve/main/huggingfaceXneuron.png"/>
</div>
"""
TITLE = """
<div style="text-align: center; max-width: 1400px; margin: 0 auto;">
<h1 style="font-weight: 900; margin-bottom: 10px; margin-top: 10px; font-size: 2.2rem;">
π€ Optimum Neuron Model Compiler ποΈ
</h1>
</div>
"""
# UPDATED: Description to reflect new workflow
DESCRIPTION = """
This Space allows you to automatically export π€ transformers and diffusion models to AWS Neuron-optimized format for Inferentia/Trainium acceleration.
Simply provide a model ID from the Hugging Face Hub, and choose your desired output.
### β¨ Key Features
* **π Create a New Optimized Repo**: Automatically converts the model and uploads it to a new repository under your username (e.g., `your-username/model-name-neuron`).
* **π Link Back to Original**: Creates a Pull Request on the original model's repository to add a link to your new optimized version, making it easily discoverable by the community.
* **π οΈ PR to a Custom Repo**: For custom workflows, you can create a Pull Request with the optimized files directly into an existing repository you own.
* **π¦ Contribute to Cache**: You can also contribute the generated compilation artifacts to a centralized cache repository, which helps speed up future compilations for everyone.
### βοΈ How to Use
1. **Model ID**: Enter the ID of the model you want to export (e.g., `bert-base-uncased` or `stabilityai/stable-diffusion-xl-base-1.0`).
2. **Export Options**: Select at least one option for where to save the exported model.
3. **Convert & Upload**: Click the button and follow the logs for progress!
"""
CUSTOM_CSS = """
/* Primary button styling with warm colors */
button.gradio-button.lg.primary {
/* Changed the blue/green gradient to an orange/yellow one */
background: linear-gradient(135deg, #F97316, #FBBF24) !important;
color: white !important;
padding: 16px 32px !important;
font-size: 1.1rem !important;
font-weight: 700 !important;
border: none !important;
border-radius: 12px !important;
/* Updated the shadow to match the new orange color */
box-shadow: 0 0 15px rgba(249, 115, 22, 0.5) !important;
transition: all 0.3s cubic-bezier(0.25, 0.8, 0.25, 1) !important;
position: relative;
overflow: hidden;
}
"""
with gr.Blocks(css=CUSTOM_CSS, theme=gr.themes.Soft()) as demo:
gr.HTML(TITLE_IMAGE)
gr.HTML(TITLE)
gr.Markdown(DESCRIPTION)
with gr.Tabs():
with gr.Tab("Export Model"):
with gr.Group():
with gr.Row():
pr_destinations_checkbox = gr.CheckboxGroup(
choices=PR_DESTINATION_CHOICES,
label="Export Destination",
value=[DEST_NEW_NEURON_REPO],
info="Select one or more destinations for the compiled model."
)
custom_repo_id_textbox = gr.Textbox(
label="Custom Repository ID",
placeholder="e.g., your-username/your-repo-name",
visible=False,
interactive=True
)
with gr.Row():
model_type = gr.Radio(
choices=["transformers", "diffusion"],
value="transformers",
label="Model Type",
info="Choose the type of model you want to export"
)
with gr.Row():
input_model = HuggingfaceHubSearch(
label="Hub model ID",
placeholder="Search for a model on the Hub...",
search_type="model",
)
task_dropdown = gr.Dropdown(
choices=ALL_TRANSFORMER_TASKS,
value="auto",
label="Task (auto can infer from model)",
)
btn = gr.Button("Export to Neuron", size="lg", variant="primary")
log_box = gr.Textbox(label="Logs", lines=20, interactive=False, show_copy_button=True)
# Event Handlers
model_type.change(
fn=update_task_dropdown,
inputs=[model_type],
outputs=[task_dropdown]
)
pr_destinations_checkbox.change(
fn=toggle_custom_repo_box,
inputs=pr_destinations_checkbox,
outputs=custom_repo_id_textbox
)
btn.click(
fn=neuron_export,
inputs=[
input_model,
model_type,
task_dropdown,
pr_destinations_checkbox,
custom_repo_id_textbox
],
outputs=log_box,
)
with gr.Tab("Supported Architectures"):
gr.HTML(f"""
<div style="margin-bottom: 20px;">
<h3>π¨ Task Categories Legend</h3>
<div class="task-tags">
{create_task_tag("Feature Extraction")}
{create_task_tag("NLP")}
{create_task_tag("Text Generation")}
{create_task_tag("Audio")}
{create_task_tag("Vision")}
{create_task_tag("Multimodal")}
{create_task_tag("Similarity")}
</div>
</div>
""")
gr.HTML(f"""
<h2>π€ Transformers</h2>
<table style="width: 100%; border-collapse: collapse; margin: 20px 0;">
<colgroup>
<col style="width: 30%;">
<col style="width: 70%;">
</colgroup>
<thead>
<tr style="background-color: var(--background-fill-secondary);">
<th style="border: 1px solid var(--border-color-primary); padding: 12px; text-align: left;">Architecture</th>
<th style="border: 1px solid var(--border-color-primary); padding: 12px; text-align: left;">Supported Tasks</th>
</tr>
</thead>
<tbody>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ALBERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">AST</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, audio-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">BERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">BLOOM</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-generation")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Beit</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">CamemBERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">CLIP</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ConvBERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ConvNext</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ConvNextV2</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">CvT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">DeBERTa (INF2 only)</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">DeBERTa-v2 (INF2 only)</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Deit</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">DistilBERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">DonutSwin</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Dpt</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ELECTRA</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ESM</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">FlauBERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">GPT2</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-generation")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Hubert</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, automatic-speech-recognition, audio-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Levit</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Llama, Llama 2, Llama 3</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-generation")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Mistral</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-generation")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Mixtral</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-generation")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">MobileBERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">MobileNetV2</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification, semantic-segmentation")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">MobileViT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification, semantic-segmentation")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ModernBERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">MPNet</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">OPT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-generation")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Phi</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">RoBERTa</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">RoFormer</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Swin</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">T5</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text2text-generation")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">UniSpeech</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, automatic-speech-recognition, audio-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">UniSpeech-SAT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, automatic-speech-recognition, audio-classification, audio-frame-classification, audio-xvector")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ViT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Wav2Vec2</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, automatic-speech-recognition, audio-classification, audio-frame-classification, audio-xvector")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">WavLM</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, automatic-speech-recognition, audio-classification, audio-frame-classification, audio-xvector")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Whisper</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("automatic-speech-recognition")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">XLM</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">XLM-RoBERTa</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Yolos</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, object-detection")}</td></tr>
</tbody>
</table>
<h2>𧨠Diffusers</h2>
<table style="width: 100%; border-collapse: collapse; margin: 20px 0;">
<colgroup>
<col style="width: 30%;">
<col style="width: 70%;">
</colgroup>
<thead>
<tr style="background-color: var(--background-fill-secondary);">
<th style="border: 1px solid var(--border-color-primary); padding: 12px; text-align: left;">Architecture</th>
<th style="border: 1px solid var(--border-color-primary); padding: 12px; text-align: left;">Supported Tasks</th>
</tr>
</thead>
<tbody>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Stable Diffusion</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-to-image, image-to-image, inpaint")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Stable Diffusion XL Base</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-to-image, image-to-image, inpaint")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Stable Diffusion XL Refiner</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("image-to-image, inpaint")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">SDXL Turbo</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-to-image, image-to-image, inpaint")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">LCM</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-to-image")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">PixArt-Ξ±</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-to-image")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">PixArt-Ξ£</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-to-image")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Flux</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-to-image")}</td></tr>
</tbody>
</table>
<h2>π€ Sentence Transformers</h2>
<table style="width: 100%; border-collapse: collapse; margin: 20px 0;">
<colgroup>
<col style="width: 30%;">
<col style="width: 70%;">
</colgroup>
<thead>
<tr style="background-color: var(--background-fill-secondary);">
<th style="border: 1px solid var(--border-color-primary); padding: 12px; text-align: left;">Architecture</th>
<th style="border: 1px solid var(--border-color-primary); padding: 12px; text-align: left;">Supported Tasks</th>
</tr>
</thead>
<tbody>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Transformer</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, sentence-similarity")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">CLIP</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, zero-shot-image-classification")}</td></tr>
</tbody>
</table>
<div style="margin-top: 20px;">
<p>π‘ <strong>Note</strong>: Some architectures may have specific requirements or limitations. DeBERTa models are only supported on INF2 instances.</p>
<p>For more details, check the <a href="https://huggingface.co/docs/optimum-neuron" target="_blank">Optimum Neuron documentation</a>.</p>
</div>
""")
# Add spacing between tabs and content
gr.Markdown("<br><br><br><br>")
if __name__ == "__main__":
demo.launch(debug=True) |