File size: 36,120 Bytes
11e4904
 
 
959ee6e
58e6c10
11e4904
959ee6e
11e4904
 
 
 
 
 
 
959ee6e
11e4904
 
959ee6e
11e4904
 
959ee6e
58e6c10
959ee6e
 
e1b4f11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1d7932
 
959ee6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1d7932
e1b4f11
 
 
 
 
 
 
959ee6e
 
 
 
 
 
 
e1b4f11
 
959ee6e
 
 
 
 
 
 
 
 
 
 
 
 
 
e1b4f11
 
 
959ee6e
 
 
 
 
e1b4f11
e1d7932
 
 
e1b4f11
 
 
 
 
 
 
 
959ee6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d762a5
959ee6e
 
 
11e4904
959ee6e
 
 
 
 
 
 
 
 
 
 
58e6c10
11e4904
959ee6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11e4904
 
959ee6e
11e4904
 
 
 
 
58e6c10
11e4904
 
96104e4
 
959ee6e
11e4904
 
58e6c10
11e4904
959ee6e
11e4904
959ee6e
7d762a5
959ee6e
7d762a5
959ee6e
54760e3
959ee6e
 
 
 
e1b4f11
959ee6e
e1b4f11
959ee6e
 
 
 
538326f
959ee6e
538326f
959ee6e
 
 
538326f
 
 
 
 
 
959ee6e
 
538326f
 
 
 
7d762a5
 
959ee6e
11e4904
 
96104e4
 
e1b4f11
 
959ee6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1b4f11
 
 
959ee6e
e1b4f11
 
959ee6e
 
e1b4f11
959ee6e
e1b4f11
 
538326f
e1b4f11
959ee6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1b4f11
 
959ee6e
 
 
 
 
 
 
 
e1b4f11
959ee6e
e1b4f11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e303e0b
 
 
 
e1b4f11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e303e0b
 
 
 
e1b4f11
 
 
 
 
 
 
 
 
 
 
 
 
 
959ee6e
 
e1b4f11
 
 
 
e303e0b
 
 
 
e1b4f11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96104e4
e1b4f11
 
7d762a5
58e6c10
959ee6e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
import csv
import os
from datetime import datetime
from typing import Optional, Union, List
import gradio as gr
from huggingface_hub import HfApi, Repository
from huggingface_hub import login
from optimum_neuron_export import convert
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from apscheduler.schedulers.background import BackgroundScheduler

DATASET_REPO_URL = "https://huggingface.co/datasets/optimum/neuron-exports"
DATA_FILENAME = "exports.csv"
DATA_FILE = os.path.join("data", DATA_FILENAME)
HF_TOKEN = os.getenv("HF_TOKEN") # It's better to use environment variables
DATADIR = "neuron_exports_data"
repo: Optional[Repository] = None

# Uncomment if you want to push to dataset repo with token
# if HF_TOKEN:
# repo = Repository(local_dir=DATADIR, clone_from=DATASET_REPO_URL, token=HF_TOKEN)

# Define transformer tasks and their categories for coloring
TRANSFORMER_TASKS = {
    "auto": {"color": "#6b7280", "category": "Auto"},
    "feature-extraction": {"color": "#3b82f6", "category": "Feature Extraction"},
    "fill-mask": {"color": "#8b5cf6", "category": "NLP"},
    "multiple-choice": {"color": "#8b5cf6", "category": "NLP"},
    "question-answering": {"color": "#8b5cf6", "category": "NLP"},
    "text-classification": {"color": "#8b5cf6", "category": "NLP"},
    "token-classification": {"color": "#8b5cf6", "category": "NLP"},
    "text-generation": {"color": "#10b981", "category": "Text Generation"},
    "text2text-generation": {"color": "#10b981", "category": "Text Generation"},
    "audio-classification": {"color": "#f59e0b", "category": "Audio"},
    "automatic-speech-recognition": {"color": "#f59e0b", "category": "Audio"},
    "audio-frame-classification": {"color": "#f59e0b", "category": "Audio"},
    "audio-xvector": {"color": "#f59e0b", "category": "Audio"},
    "image-classification": {"color": "#ef4444", "category": "Vision"},
    "object-detection": {"color": "#ef4444", "category": "Vision"},
    "semantic-segmentation": {"color": "#ef4444", "category": "Vision"},
    "zero-shot-image-classification": {"color": "#ec4899", "category": "Multimodal"},
    "sentence-similarity": {"color": "#06b6d4", "category": "Similarity"},
}

# Define diffusion pipeline types
DIFFUSION_PIPELINES = {
    "text-to-image": {"color": "#ec4899", "category": "Stable Diffusion"},
    "image-to-image": {"color": "#ec4899", "category": "Stable Diffusion"},
    "inpaint": {"color": "#ec4899", "category": "Stable Diffusion"},
    "instruct-pix2pix": {"color": "#ec4899", "category": "Stable Diffusion"},
    "latent-consistency": {"color": "#8b5cf6", "category": "Latent Consistency"},
    "stable-diffusion": {"color": "#10b981", "category": "Stable Diffusion"},
    "stable-diffusion-xl": {"color": "#10b981", "category": "Stable Diffusion XL"},
    "stable-diffusion-xl-img2img": {"color": "#10b981", "category": "Stable Diffusion XL"},
    "stable-diffusion-xl-inpaint": {"color": "#10b981", "category": "Stable Diffusion XL"},
    "controlnet": {"color": "#f59e0b", "category": "ControlNet"},
    "controlnet-xl": {"color": "#f59e0b", "category": "ControlNet XL"},
    "pixart-alpha": {"color": "#ef4444", "category": "PixArt"},
    "pixart-sigma": {"color": "#ef4444", "category": "PixArt"},
    "flux": {"color": "#06b6d4", "category": "Flux"},
}

TAGS = {
    "Feature Extraction": {"color": "#3b82f6", "category": "Feature Extraction"},
    "NLP": {"color": "#8b5cf6", "category": "NLP"},
    "Text Generation": {"color": "#10b981", "category": "Text Generation"},
    "Audio": {"color": "#f59e0b", "category": "Audio"},
    "Vision": {"color": "#ef4444", "category": "Vision"},
    "Multimodal": {"color": "#ec4899", "category": "Multimodal"},
    "Similarity": {"color": "#06b6d4", "category": "Similarity"},
    "Stable Diffusion": {"color": "#ec4899", "category": "Stable Diffusion"},
    "Stable Diffusion XL": {"color": "#10b981", "category": "Stable Diffusion XL"},
    "ControlNet": {"color": "#f59e0b", "category": "ControlNet"},
    "ControlNet XL": {"color": "#f59e0b", "category": "ControlNet XL"},
    "PixArt": {"color": "#ef4444", "category": "PixArt"},
    "Latent Consistency": {"color": "#8b5cf6", "category": "Latent Consistency"},
    "Flux": {"color": "#06b6d4", "category": "Flux"},
}

# UPDATED: New choices for the Pull Request destination UI component
DEST_NEW_NEURON_REPO = "Create new Neuron-optimized repository"
DEST_CACHE_REPO = "Create a PR in the cache repository"
DEST_CUSTOM_REPO = "Create a PR in a custom repository"

PR_DESTINATION_CHOICES = [
    DEST_NEW_NEURON_REPO,
    DEST_CACHE_REPO,
    DEST_CUSTOM_REPO
]

# Get all tasks and pipelines for dropdowns
ALL_TRANSFORMER_TASKS = list(TRANSFORMER_TASKS.keys())
ALL_DIFFUSION_PIPELINES = list(DIFFUSION_PIPELINES.keys())

def create_task_tag(task: str) -> str:
    """Create a colored HTML tag for a task"""
    if task in TRANSFORMER_TASKS:
        color = TRANSFORMER_TASKS[task]["color"]
        return f'<span style="background-color: {color}; color: white; padding: 2px 6px; border-radius: 12px; font-size: 0.75rem; font-weight: 500; margin: 1px;">{task}</span>'
    elif task in DIFFUSION_PIPELINES:
        color = DIFFUSION_PIPELINES[task]["color"]
        return f'<span style="background-color: {color}; color: white; padding: 2px 6px; border-radius: 12px; font-size: 0.75rem; font-weight: 500; margin: 1px;">{task}</span>'
    elif task in TAGS:
        color = TAGS[task]["color"]
        return f'<span style="background-color: {color}; color: white; padding: 2px 6px; border-radius: 12px; font-size: 0.75rem; font-weight: 500; margin: 1px;">{task}</span>'
    else:
        return f'<span style="background-color: #6b7280; color: white; padding: 2px 6px; border-radius: 12px; font-size: 0.75rem; font-weight: 500; margin: 1px;">{task}</span>'

def format_tasks_for_table(tasks_str: str) -> str:
    """Convert comma-separated tasks into colored tags"""
    tasks = [task.strip() for task in tasks_str.split(',')]
    return ' '.join([create_task_tag(task) for task in tasks])

def update_task_dropdown(model_type: str):
    """Update the task dropdown based on selected model type"""
    if model_type == "transformers":
        return gr.Dropdown(
            choices=ALL_TRANSFORMER_TASKS,
            value="auto",
            label="Task (auto can infer task from model)",
            visible=True
        )
    else:  # diffusion
        return gr.Dropdown(
            choices=ALL_DIFFUSION_PIPELINES,
            value="text-to-image",
            label="Pipeline Type",
            visible=True
        )

def toggle_custom_repo_box(pr_destinations: List[str]):
    """Show or hide the custom repo ID textbox based on checkbox selection."""
    if DEST_CUSTOM_REPO in pr_destinations:
        return gr.Textbox(visible=True)
    else:
        return gr.Textbox(visible=False, value="")

# UPDATED: Modified function to handle new repository creation workflow
def neuron_export(model_id: str, model_type: str, task_or_pipeline: str, 
                  pr_destinations: List[str], custom_repo_id: str):
    if not model_id:
        yield "🚫 Invalid input. Please specify a model name from the hub."
        return

    log_buffer = ""
    def log(msg):
        nonlocal log_buffer
        # Handle cases where the message from the backend is not a string
        if not isinstance(msg, str):
            msg = str(msg)
        log_buffer += msg + "\n"
        return log_buffer

    try:
        api = HfApi()
        yield log(f"πŸ”‘ Logging in with provided token...")
        if not HF_TOKEN:
            yield log("❌ HF_TOKEN not found. Please set it as an environment variable in the Space secrets.")
            return
        
        login(token=HF_TOKEN)
        yield log("βœ… Login successful.")
        yield log(f"πŸ” Checking access to `{model_id}`...")
        try:
            api.model_info(model_id, token=HF_TOKEN)
        except Exception as e:
            yield log(f"❌ Could not access model `{model_id}`: {e}")
            return

        yield log(f"βœ… Model `{model_id}` is accessible. Starting Neuron export...")
        
        # UPDATED: Build pr_options with new structure
        pr_options = {
            "create_neuron_repo": DEST_NEW_NEURON_REPO in pr_destinations,
            "create_cache_pr": DEST_CACHE_REPO in pr_destinations,
            "create_custom_pr": DEST_CUSTOM_REPO in pr_destinations,
            "custom_repo_id": custom_repo_id.strip() if custom_repo_id else ""
        }

        # The convert function is a generator, so we iterate through its messages
        for status_code, message in convert(api, model_id, task_or_pipeline, model_type, 
                                            token=HF_TOKEN, pr_options=pr_options):
            if isinstance(message, str):
                yield log(message)
            else:  # It's the final result dictionary
                final_message = "πŸŽ‰ Process finished.\n"
                if message.get("neuron_repo"):
                    final_message += f"πŸ—οΈ New Neuron Repository: {message['neuron_repo']}\n"
                if message.get("readme_pr"):
                    final_message += f"πŸ“ README PR (Original Model): {message['readme_pr']}\n"
                if message.get("cache_pr"):
                    final_message += f"πŸ”— Cache PR: {message['cache_pr']}\n"
                if message.get("custom_pr"):
                    final_message += f"πŸ”— Custom PR: {message['custom_pr']}\n"
                yield log(final_message)

    except Exception as e:
        yield log(f"❗ An unexpected error occurred in the Gradio interface: {e}")

TITLE_IMAGE = """
<div style="display: block; margin-left: auto; margin-right: auto; width: 50%;">
<img src="https://huggingface.co/spaces/optimum/neuron-export/resolve/main/huggingfaceXneuron.png"/>
</div>
"""

TITLE = """
<div style="text-align: center; max-width: 1400px; margin: 0 auto;">
<h1 style="font-weight: 900; margin-bottom: 10px; margin-top: 10px; font-size: 2.2rem;">
    πŸ€— Optimum Neuron Model Compiler 🏎️
</h1>
</div>
"""

# UPDATED: Description to reflect new workflow
DESCRIPTION = """
This Space allows you to automatically export πŸ€— transformers and diffusion models to AWS Neuron-optimized format for Inferentia/Trainium acceleration. 

Simply provide a model ID from the Hugging Face Hub, and choose your desired output.

### ✨ Key Features

* **πŸš€ Create a New Optimized Repo**: Automatically converts the model and uploads it to a new repository under your username (e.g., `your-username/model-name-neuron`).
* **πŸ”— Link Back to Original**: Creates a Pull Request on the original model's repository to add a link to your new optimized version, making it easily discoverable by the community.
* **πŸ› οΈ PR to a Custom Repo**: For custom workflows, you can create a Pull Request with the optimized files directly into an existing repository you own.
* **πŸ“¦ Contribute to Cache**: You can also contribute the generated compilation artifacts to a centralized cache repository, which helps speed up future compilations for everyone.

### βš™οΈ How to Use

1.  **Model ID**: Enter the ID of the model you want to export (e.g., `bert-base-uncased` or `stabilityai/stable-diffusion-xl-base-1.0`).
2.  **Export Options**: Select at least one option for where to save the exported model.
3.  **Convert & Upload**: Click the button and follow the logs for progress!
"""

CUSTOM_CSS = """
/* Primary button styling with warm colors */
button.gradio-button.lg.primary {
    /* Changed the blue/green gradient to an orange/yellow one */
    background: linear-gradient(135deg, #F97316, #FBBF24) !important;
    color: white !important;
    padding: 16px 32px !important;
    font-size: 1.1rem !important;
    font-weight: 700 !important;
    border: none !important;
    border-radius: 12px !important;
    /* Updated the shadow to match the new orange color */
    box-shadow: 0 0 15px rgba(249, 115, 22, 0.5) !important;
    transition: all 0.3s cubic-bezier(0.25, 0.8, 0.25, 1) !important;
    position: relative;
    overflow: hidden;
}
"""

with gr.Blocks(css=CUSTOM_CSS, theme=gr.themes.Soft()) as demo:
    gr.HTML(TITLE_IMAGE)
    gr.HTML(TITLE)
    gr.Markdown(DESCRIPTION)
    
    with gr.Tabs():
        with gr.Tab("Export Model"):
            with gr.Group():          
                with gr.Row():
                    pr_destinations_checkbox = gr.CheckboxGroup(
                        choices=PR_DESTINATION_CHOICES,
                        label="Export Destination",
                        value=[DEST_NEW_NEURON_REPO],
                        info="Select one or more destinations for the compiled model."
                    )
                    custom_repo_id_textbox = gr.Textbox(
                        label="Custom Repository ID",
                        placeholder="e.g., your-username/your-repo-name",
                        visible=False,  
                        interactive=True
                    )
            with gr.Row():
                model_type = gr.Radio(
                    choices=["transformers", "diffusion"],
                    value="transformers",
                    label="Model Type",
                    info="Choose the type of model you want to export"
                ) 
            with gr.Row():
                input_model = HuggingfaceHubSearch(
                    label="Hub model ID",
                    placeholder="Search for a model on the Hub...",
                    search_type="model",
                )
                task_dropdown = gr.Dropdown(
                    choices=ALL_TRANSFORMER_TASKS,
                    value="auto",
                    label="Task (auto can infer from model)",
                )
            
            btn = gr.Button("Export to Neuron", size="lg", variant="primary")
            
            log_box = gr.Textbox(label="Logs", lines=20, interactive=False, show_copy_button=True)
            
            # Event Handlers
            model_type.change(
                fn=update_task_dropdown,
                inputs=[model_type],
                outputs=[task_dropdown]
            )
            
            pr_destinations_checkbox.change(
                fn=toggle_custom_repo_box,
                inputs=pr_destinations_checkbox,
                outputs=custom_repo_id_textbox
            )
            
            btn.click(
                fn=neuron_export,
                inputs=[
                    input_model, 
                    model_type, 
                    task_dropdown,
                    pr_destinations_checkbox,
                    custom_repo_id_textbox
                ],
                outputs=log_box,
            )
            
        with gr.Tab("Supported Architectures"):
            gr.HTML(f"""
            <div style="margin-bottom: 20px;">
                <h3>🎨 Task Categories Legend</h3>
                <div class="task-tags">
                    {create_task_tag("Feature Extraction")} 
                    {create_task_tag("NLP")}
                    {create_task_tag("Text Generation")}
                    {create_task_tag("Audio")}
                    {create_task_tag("Vision")}
                    {create_task_tag("Multimodal")}
                    {create_task_tag("Similarity")}
                </div>
            </div>
            """)
            
            gr.HTML(f"""
            <h2>πŸ€— Transformers</h2>
            <table style="width: 100%; border-collapse: collapse; margin: 20px 0;">
                <colgroup>
                    <col style="width: 30%;">
                    <col style="width: 70%;">
                </colgroup>
                <thead>
                    <tr style="background-color: var(--background-fill-secondary);">
                        <th style="border: 1px solid var(--border-color-primary); padding: 12px; text-align: left;">Architecture</th>
                        <th style="border: 1px solid var(--border-color-primary); padding: 12px; text-align: left;">Supported Tasks</th>
                    </tr>
                </thead>
                <tbody>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ALBERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">AST</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, audio-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">BERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">BLOOM</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-generation")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Beit</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">CamemBERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">CLIP</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ConvBERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ConvNext</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ConvNextV2</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">CvT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">DeBERTa (INF2 only)</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">DeBERTa-v2  (INF2 only)</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Deit</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">DistilBERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">DonutSwin</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Dpt</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ELECTRA</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ESM</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, text-classification, token-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">FlauBERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">GPT2</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-generation")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Hubert</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, automatic-speech-recognition, audio-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Levit</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Llama, Llama 2, Llama 3</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-generation")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Mistral</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-generation")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Mixtral</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-generation")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">MobileBERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">MobileNetV2</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification, semantic-segmentation")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">MobileViT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification, semantic-segmentation")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ModernBERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, text-classification, token-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">MPNet</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">OPT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-generation")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Phi</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, text-classification, token-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">RoBERTa</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">RoFormer</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Swin</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">T5</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text2text-generation")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">UniSpeech</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, automatic-speech-recognition, audio-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">UniSpeech-SAT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, automatic-speech-recognition, audio-classification, audio-frame-classification, audio-xvector")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ViT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Wav2Vec2</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, automatic-speech-recognition, audio-classification, audio-frame-classification, audio-xvector")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">WavLM</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, automatic-speech-recognition, audio-classification, audio-frame-classification, audio-xvector")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Whisper</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("automatic-speech-recognition")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">XLM</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">XLM-RoBERTa</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Yolos</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, object-detection")}</td></tr>
                </tbody>
            </table>
            <h2>🧨 Diffusers</h2>
            <table style="width: 100%; border-collapse: collapse; margin: 20px 0;">
                <colgroup>
                    <col style="width: 30%;">
                    <col style="width: 70%;">
                </colgroup>
                <thead>
                    <tr style="background-color: var(--background-fill-secondary);">
                        <th style="border: 1px solid var(--border-color-primary); padding: 12px; text-align: left;">Architecture</th>
                        <th style="border: 1px solid var(--border-color-primary); padding: 12px; text-align: left;">Supported Tasks</th>
                    </tr>
                </thead>
                <tbody>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Stable Diffusion</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-to-image, image-to-image, inpaint")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Stable Diffusion XL Base</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-to-image, image-to-image, inpaint")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Stable Diffusion XL Refiner</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("image-to-image, inpaint")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">SDXL Turbo</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-to-image, image-to-image, inpaint")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">LCM</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-to-image")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">PixArt-Ξ±</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-to-image")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">PixArt-Ξ£</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-to-image")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Flux</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-to-image")}</td></tr>

                </tbody>
            </table>
            <h2>πŸ€– Sentence Transformers</h2>
            <table style="width: 100%; border-collapse: collapse; margin: 20px 0;">
                <colgroup>
                    <col style="width: 30%;">
                    <col style="width: 70%;">
                </colgroup>
                <thead>
                    <tr style="background-color: var(--background-fill-secondary);">
                        <th style="border: 1px solid var(--border-color-primary); padding: 12px; text-align: left;">Architecture</th>
                        <th style="border: 1px solid var(--border-color-primary); padding: 12px; text-align: left;">Supported Tasks</th>
                    </tr>
                </thead>
                <tbody>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Transformer</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, sentence-similarity")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">CLIP</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, zero-shot-image-classification")}</td></tr>
                </tbody>
            </table>
            <div style="margin-top: 20px;">
                <p>πŸ’‘ <strong>Note</strong>: Some architectures may have specific requirements or limitations. DeBERTa models are only supported on INF2 instances.</p>
                <p>For more details, check the <a href="https://huggingface.co/docs/optimum-neuron" target="_blank">Optimum Neuron documentation</a>.</p>
            </div>
            """)
    
    # Add spacing between tabs and content
    gr.Markdown("<br><br><br><br>")

if __name__ == "__main__":
    demo.launch(debug=True)