Spaces:
Running
Running
Commit
·
804d27e
1
Parent(s):
9904a48
switch to tradeoff distance
Browse files
app.py
CHANGED
|
@@ -1,5 +1,4 @@
|
|
| 1 |
import os
|
| 2 |
-
import math
|
| 3 |
import gradio as gr
|
| 4 |
import pandas as pd
|
| 5 |
import plotly.express as px
|
|
@@ -33,10 +32,10 @@ COLUMNS_MAPPING = {
|
|
| 33 |
"backend.torch_dtype": "Load Dtype 📥",
|
| 34 |
"optimizations": "Optimizations 🛠️",
|
| 35 |
#
|
| 36 |
-
"
|
| 37 |
#
|
| 38 |
-
"generate.throughput(tokens/s)": "Throughput (tokens/s) ⬆️",
|
| 39 |
"score": "Open LLM Score ⬆️",
|
|
|
|
| 40 |
"forward.peak_memory(MB)": "Peak Memory (MB) ⬇️",
|
| 41 |
"num_params": "#️⃣ Parameters (M) 📏",
|
| 42 |
}
|
|
@@ -47,13 +46,13 @@ COLUMNS_DATATYPES = [
|
|
| 47 |
"str",
|
| 48 |
#
|
| 49 |
"number",
|
| 50 |
-
"number",
|
| 51 |
#
|
| 52 |
"number",
|
| 53 |
"number",
|
| 54 |
"number",
|
|
|
|
| 55 |
]
|
| 56 |
-
SORTING_COLUMN = ["Open LLM
|
| 57 |
|
| 58 |
|
| 59 |
llm_perf_dataset_repo = load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN)
|
|
@@ -74,8 +73,8 @@ def get_benchmark_df(benchmark="1xA100-80GB"):
|
|
| 74 |
# create composite score
|
| 75 |
score_distance = 100 - bench_df["score"]
|
| 76 |
latency_distance = bench_df["generate.latency(s)"]
|
| 77 |
-
bench_df["
|
| 78 |
-
bench_df["
|
| 79 |
|
| 80 |
# add optimizations
|
| 81 |
bench_df["optimizations"] = bench_df[
|
|
|
|
| 1 |
import os
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
import pandas as pd
|
| 4 |
import plotly.express as px
|
|
|
|
| 32 |
"backend.torch_dtype": "Load Dtype 📥",
|
| 33 |
"optimizations": "Optimizations 🛠️",
|
| 34 |
#
|
| 35 |
+
"tradeoff": "Open LLM Tradeoff ⬇️",
|
| 36 |
#
|
|
|
|
| 37 |
"score": "Open LLM Score ⬆️",
|
| 38 |
+
"generate.throughput(tokens/s)": "Throughput (tokens/s) ⬆️",
|
| 39 |
"forward.peak_memory(MB)": "Peak Memory (MB) ⬇️",
|
| 40 |
"num_params": "#️⃣ Parameters (M) 📏",
|
| 41 |
}
|
|
|
|
| 46 |
"str",
|
| 47 |
#
|
| 48 |
"number",
|
|
|
|
| 49 |
#
|
| 50 |
"number",
|
| 51 |
"number",
|
| 52 |
"number",
|
| 53 |
+
"number",
|
| 54 |
]
|
| 55 |
+
SORTING_COLUMN = ["Open LLM Tradeoff ⬇️"]
|
| 56 |
|
| 57 |
|
| 58 |
llm_perf_dataset_repo = load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN)
|
|
|
|
| 73 |
# create composite score
|
| 74 |
score_distance = 100 - bench_df["score"]
|
| 75 |
latency_distance = bench_df["generate.latency(s)"]
|
| 76 |
+
bench_df["tradeoff"] = (score_distance**2 + latency_distance**2) ** 0.5
|
| 77 |
+
bench_df["tradeoff"] = bench_df["tradeoff"].round(2)
|
| 78 |
|
| 79 |
# add optimizations
|
| 80 |
bench_df["optimizations"] = bench_df[
|