Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
import streamlit as st
|
2 |
-
import sqlite3
|
3 |
import faiss
|
4 |
import numpy as np
|
5 |
from transformers import pipeline, M2M100ForConditionalGeneration, M2M100Tokenizer
|
@@ -9,63 +8,20 @@ import PyMuPDF
|
|
9 |
import requests
|
10 |
from bs4 import BeautifulSoup
|
11 |
from langdetect import detect
|
12 |
-
import os
|
13 |
|
14 |
# Initialize models and pipeline
|
15 |
qa_pipeline = pipeline("question-answering", model="distilbert-base-uncased")
|
16 |
embedding_model = SentenceTransformer('distiluse-base-multilingual-cased-v1')
|
17 |
|
18 |
-
# FAISS index setup (in-memory
|
19 |
dimension = 512 # Size of the embeddings
|
20 |
index = faiss.IndexFlatL2(dimension)
|
|
|
21 |
|
22 |
# Initialize translation model for on-the-fly translation
|
23 |
tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M")
|
24 |
model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M")
|
25 |
|
26 |
-
# SQLite Database Setup
|
27 |
-
DB_PATH = "knowledge_base.db"
|
28 |
-
|
29 |
-
def init_db():
|
30 |
-
""" Initialize the database and tables if they don't exist. """
|
31 |
-
conn = sqlite3.connect(DB_PATH)
|
32 |
-
c = conn.cursor()
|
33 |
-
c.execute('''
|
34 |
-
CREATE TABLE IF NOT EXISTS documents (
|
35 |
-
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
36 |
-
content TEXT NOT NULL,
|
37 |
-
language TEXT,
|
38 |
-
embedding BLOB NOT NULL
|
39 |
-
)
|
40 |
-
''')
|
41 |
-
conn.commit()
|
42 |
-
conn.close()
|
43 |
-
|
44 |
-
def store_document(content, language, embedding):
|
45 |
-
""" Store document content, language, and embedding in the SQLite database. """
|
46 |
-
conn = sqlite3.connect(DB_PATH)
|
47 |
-
c = conn.cursor()
|
48 |
-
c.execute("INSERT INTO documents (content, language, embedding) VALUES (?, ?, ?)",
|
49 |
-
(content, language, embedding.tobytes()))
|
50 |
-
conn.commit()
|
51 |
-
conn.close()
|
52 |
-
|
53 |
-
def load_documents():
|
54 |
-
""" Load all documents and embeddings from the SQLite database. """
|
55 |
-
conn = sqlite3.connect(DB_PATH)
|
56 |
-
c = conn.cursor()
|
57 |
-
c.execute("SELECT content, language, embedding FROM documents")
|
58 |
-
rows = c.fetchall()
|
59 |
-
conn.close()
|
60 |
-
|
61 |
-
documents = []
|
62 |
-
embeddings = []
|
63 |
-
for content, language, embedding_blob in rows:
|
64 |
-
documents.append(content)
|
65 |
-
embeddings.append(np.frombuffer(embedding_blob, dtype=np.float32))
|
66 |
-
|
67 |
-
return documents, np.array(embeddings)
|
68 |
-
|
69 |
def translate_text(text, src_lang, tgt_lang):
|
70 |
""" Translate text using the M2M100 model. """
|
71 |
tokenizer.src_lang = src_lang
|
@@ -73,12 +29,6 @@ def translate_text(text, src_lang, tgt_lang):
|
|
73 |
generated_tokens = model.generate(**encoded, forced_bos_token_id=tokenizer.get_lang_id(tgt_lang))
|
74 |
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
75 |
|
76 |
-
# Initialize database and FAISS index
|
77 |
-
init_db()
|
78 |
-
documents, embeddings = load_documents()
|
79 |
-
if len(embeddings) > 0:
|
80 |
-
index.add(embeddings)
|
81 |
-
|
82 |
# Sidebar for navigation
|
83 |
st.sidebar.title("Navigation")
|
84 |
page = st.sidebar.radio("Go to", ["Upload Knowledge", "Q&A"])
|
@@ -111,9 +61,6 @@ if page == "Upload Knowledge":
|
|
111 |
# Generate embeddings
|
112 |
embedding = embedding_model.encode([text])[0]
|
113 |
|
114 |
-
# Store the document and embedding in the database
|
115 |
-
store_document(text, detected_lang, embedding)
|
116 |
-
|
117 |
# Add the embedding to FAISS index
|
118 |
index.add(np.array([embedding], dtype=np.float32))
|
119 |
documents.append(text)
|
@@ -130,9 +77,6 @@ if page == "Upload Knowledge":
|
|
130 |
# Generate embedding
|
131 |
embedding = embedding_model.encode([text])[0]
|
132 |
|
133 |
-
# Store the document and embedding in the database
|
134 |
-
store_document(text, detected_lang, embedding)
|
135 |
-
|
136 |
# Add the embedding to FAISS index
|
137 |
index.add(np.array([embedding], dtype=np.float32))
|
138 |
documents.append(text)
|
|
|
1 |
import streamlit as st
|
|
|
2 |
import faiss
|
3 |
import numpy as np
|
4 |
from transformers import pipeline, M2M100ForConditionalGeneration, M2M100Tokenizer
|
|
|
8 |
import requests
|
9 |
from bs4 import BeautifulSoup
|
10 |
from langdetect import detect
|
|
|
11 |
|
12 |
# Initialize models and pipeline
|
13 |
qa_pipeline = pipeline("question-answering", model="distilbert-base-uncased")
|
14 |
embedding_model = SentenceTransformer('distiluse-base-multilingual-cased-v1')
|
15 |
|
16 |
+
# FAISS index setup (in-memory)
|
17 |
dimension = 512 # Size of the embeddings
|
18 |
index = faiss.IndexFlatL2(dimension)
|
19 |
+
documents = []
|
20 |
|
21 |
# Initialize translation model for on-the-fly translation
|
22 |
tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M")
|
23 |
model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M")
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
def translate_text(text, src_lang, tgt_lang):
|
26 |
""" Translate text using the M2M100 model. """
|
27 |
tokenizer.src_lang = src_lang
|
|
|
29 |
generated_tokens = model.generate(**encoded, forced_bos_token_id=tokenizer.get_lang_id(tgt_lang))
|
30 |
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
# Sidebar for navigation
|
33 |
st.sidebar.title("Navigation")
|
34 |
page = st.sidebar.radio("Go to", ["Upload Knowledge", "Q&A"])
|
|
|
61 |
# Generate embeddings
|
62 |
embedding = embedding_model.encode([text])[0]
|
63 |
|
|
|
|
|
|
|
64 |
# Add the embedding to FAISS index
|
65 |
index.add(np.array([embedding], dtype=np.float32))
|
66 |
documents.append(text)
|
|
|
77 |
# Generate embedding
|
78 |
embedding = embedding_model.encode([text])[0]
|
79 |
|
|
|
|
|
|
|
80 |
# Add the embedding to FAISS index
|
81 |
index.add(np.array([embedding], dtype=np.float32))
|
82 |
documents.append(text)
|