File size: 11,396 Bytes
20dc456
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import json
from dataclasses import dataclass
from datetime import datetime
from enum import Enum
from typing import Dict, List, Optional

from claudette import Chat, models


@dataclass
class Context:
    tibetan: str
    english: str
    commentaries: List[str]
    sanskrit: Optional[str] = None


class AnalysisType(Enum):
    SEMANTIC = "semantic"
    TERM_GENERATION = "term_generation"
    EVALUATION = "evaluation"


class BuddhistTermAnalyzer:
    def __init__(self):
        # Use Claude 3.5 Sonnet
        self.model = models[1]  # claude-3-5-sonnet
        self.total_api_calls_cost = 0
        self.token_usage = {}

        # Initialize different chats for different analysis types
        self.system_prompts = {
            AnalysisType.SEMANTIC: """You are an expert in Buddhist terminology analysis with deep knowledge of Sanskrit and Tibetan.
            Analyze the given term through a systematic philological approach.
            You must ONLY respond with a valid JSON object, no other text.
            Never include any explanatory text before or after the JSON.

            Required JSON structure:
            {
                "sanskrit_analysis": {
                    "term": "string",  # Sanskrit equivalent
                    "morphology": "string",  # Morphological breakdown
                    "literal_meaning": "string",  # Literal meaning in Sanskrit
                    "technical_usage": "string"  # Technical usage in Sanskrit Buddhist literature
                },
                "tibetan_mapping": {
                    "term": "string",  # Tibetan term
                    "morphology": "string",  # Morphological breakdown of Tibetan
                    "translation_strategy": "string",  # How Tibetan translates the Sanskrit
                    "semantic_extension": "string"  # Any semantic changes or extensions in Tibetan
                },
                "commentary_insights": [
                    {
                        "source": "string",  # Which commentary
                        "explanation": "string",  # Key explanation
                        "technical_points": ["string"]  # Technical clarifications
                    }
                ],
                "english_renderings": [
                    {
                        "translation": "string",
                        "accuracy_score": number,  # 1-10
                        "captures_sanskrit": boolean,
                        "captures_tibetan": boolean,
                        "notes": "string"
                    }
                ],
                "semantic_synthesis": {
                    "core_meaning": "string",  # Core meaning synthesized from all sources
                    "technical_usage": ["string"],  # List of technical usages found in context
                    "connotative_aspects": ["string"]  # Important connotations and implications
                },
                "usage_examples": [
                    {
                        "source_text": "string",  # Original context
                        "usage_type": "string",  # How term is used here
                        "commentary_explanation": "string"  # What commentary says about this usage
                    }
                ]
            }""",
            AnalysisType.TERM_GENERATION: """You are an expert Buddhist translator.
            You must ONLY respond with a valid JSON object, no other text.
            Never include any explanatory text before or after the JSON.

            Required JSON structure:
            {
                "academic": {
                    "terms": ["term1", "term2"],
                    "reasoning": "string"
                },
                "practitioner": {
                    "terms": ["term1", "term2"],
                    "reasoning": "string"
                },
                "general": {
                    "terms": ["term1", "term2"],
                    "reasoning": "string"
                }
            }""",
            AnalysisType.EVALUATION: """You are an expert evaluator of Buddhist translations.
            You must ONLY respond with a valid JSON object, no other text.
            Never include any explanatory text before or after the JSON.

            Required JSON structure:
            {
                "evaluations": {
                    "term": {
                        "technical_score": 0.0,
                        "cultural_score": 0.0,
                        "audience_score": 0.0,
                        "reasoning": "string"
                    }
                }
            }""",
        }

        # Initialize chats with respective system prompts
        self.chats = {
            analysis_type: Chat(self.model, sp=system_prompt)
            for analysis_type, system_prompt in self.system_prompts.items()
        }

    def create_semantic_prompt(self, tibetan_term: str, contexts: List[Dict]) -> str:
        return f"""
        Analyze this Buddhist term following these steps:

        Target Term: {tibetan_term}

        Analysis Process:
        1. First analyze the Sanskrit source:
           - Identify the Sanskrit equivalent
           - Break down its morphology
           - Understand its literal and technical meanings

        2. Map to Tibetan:
           - Analyze how Tibetan translates the Sanskrit
           - Note any semantic extensions or modifications
           - Understand the translation strategy

        3. Study the commentaries:
           - Extract key explanations
           - Note technical clarifications
           - Identify special usages explained

        4. Evaluate English translations:
           - Compare against Sanskrit and Tibetan meanings
           - Assess accuracy and completeness
           - Note which aspects are captured/missed

        5. Synthesize understanding:
           - Combine insights from all sources
           - Document technical usage patterns
           - Note important connotations

        Contexts:
        {json.dumps(contexts, indent=2, ensure_ascii=False)}

        Important:
        - Base analysis strictly on provided contexts
        - Use commentaries to resolve ambiguities
        - Pay special attention to technical terms in commentaries
        - Note when English translations diverge from Sanskrit/Tibetan
        - Document specific usage examples from the context

        Remember: Return ONLY the JSON object with no other text."""

    def create_generation_prompt(
        self, tibetan_term: str, semantic_analysis: Dict
    ) -> str:
        return f"""
        Respond ONLY with a JSON object containing translation candidates:

        Term: {tibetan_term}

        Semantic Analysis:
        {json.dumps(semantic_analysis, indent=2, ensure_ascii=False)}

        Remember: Return ONLY the JSON object with no other text."""

    def create_evaluation_prompt(
        self, tibetan_term: str, candidates: Dict, semantic_analysis: Dict
    ) -> str:
        return f"""
        Respond ONLY with a JSON object evaluating these candidates:

        Term: {tibetan_term}

        Candidates:
        {json.dumps(candidates, indent=2, ensure_ascii=False)}

        Semantic Analysis:
        {json.dumps(semantic_analysis, indent=2, ensure_ascii=False)}

        Remember: Return ONLY the JSON object with no other text."""

    def _track_usage(self, analysis_type: AnalysisType, response):
        cost = self.chats[analysis_type].cost
        self.total_api_calls_cost += cost
        self.token_usage[str(analysis_type)] = {
            "token_usage": repr(response.usage),
            "api_call_cost": cost,
        }

    def analyze_term(self, tibetan_term: str, contexts: List[Dict]) -> Dict:
        """Main analysis pipeline using cached prompts"""

        # 1. Semantic Analysis with cache
        semantic_prompt = self.create_semantic_prompt(tibetan_term, contexts)
        semantic_response = self.chats[AnalysisType.SEMANTIC](semantic_prompt)
        self._track_usage(AnalysisType.SEMANTIC, semantic_response)
        semantic_analysis = json.loads(semantic_response.content[0].text)

        # 2. Term Generation with cache
        generation_prompt = self.create_generation_prompt(
            tibetan_term, semantic_analysis
        )
        generation_response = self.chats[AnalysisType.TERM_GENERATION](
            generation_prompt
        )
        self._track_usage(AnalysisType.TERM_GENERATION, generation_response)
        semantic_analysis = json.loads(semantic_response.content[0].text)
        candidates = json.loads(generation_response.content[0].text)

        # 3. Evaluation with cache
        evaluation_prompt = self.create_evaluation_prompt(
            tibetan_term, candidates, semantic_analysis
        )
        evaluation_response = self.chats[AnalysisType.EVALUATION](evaluation_prompt)
        self._track_usage(AnalysisType.EVALUATION, evaluation_response)
        evaluations = json.loads(evaluation_response.content[0].text)

        # Combine results
        return self.format_results(
            tibetan_term,
            semantic_analysis,
            candidates,
            evaluations,
        )

    def format_results(
        self,
        tibetan_term: str,
        semantic_analysis: Dict,
        candidates: Dict,
        evaluations: Dict,
    ) -> Dict:
        """Format the final results"""
        return {
            "tibetan_term": tibetan_term,
            "recommendations": {
                "Academic": {
                    "term": candidates["academic"]["terms"][0],
                    "reasoning": candidates["academic"]["reasoning"],
                },
                "Practitioner": {
                    "term": candidates["practitioner"]["terms"][0],
                    "reasoning": candidates["practitioner"]["reasoning"],
                },
                "General": {
                    "term": candidates["general"]["terms"][0],
                    "reasoning": candidates["general"]["reasoning"],
                },
            },
            "analysis": semantic_analysis,
            "evaluations": evaluations["evaluations"],
            "total_api_calls_cost": self.total_api_calls_cost,
            "token_usage": self.token_usage,
        }


class TermStandardizationAgent:
    def __init__(self):
        self.analyzer = BuddhistTermAnalyzer()

    def select_best_terms(self, tibetan_term: str, contexts: List[Dict]) -> Dict:
        """Main entry point for term standardization"""
        results = self.analyzer.analyze_term(tibetan_term, contexts)
        return results


# Example usage
def main():
    from pathlib import Path

    # Initialize agent
    agent = TermStandardizationAgent()

    # Test input
    tibetan_term = "བྱང་ཆུབ་སེམས་"
    contexts_fn = Path(__file__).parent / "data" / f"{tibetan_term}.json"
    contexts = json.load(contexts_fn.open())

    # Process term
    results = agent.select_best_terms(tibetan_term, contexts)
    date_time = datetime.now().strftime("%Y%m%d%H%M%S")
    results_path = Path(__file__).parent / "results"
    results_path.mkdir(exist_ok=True, parents=True)
    result_fn = results_path / f"{tibetan_term}_{date_time}.json"
    json.dump(results, result_fn.open("w"), indent=2, ensure_ascii=False)
    print(f"Results saved to: {result_fn}")


if __name__ == "__main__":
    main()