Spaces:
Runtime error
Runtime error
| from lm_eval import tasks, evaluator, utils | |
| from lm_eval.tasks import initialize_tasks, TaskManager | |
| try: | |
| from lm_eval.tasks import include_task_folder | |
| except: | |
| from lm_eval.tasks import include_path | |
| from src.backend.manage_requests import EvalRequest | |
| # from src.backend.tasks.xsum.task import XSum | |
| # from src.backend.tasks.xsum.task_v2 import XSumv2 | |
| # from src.backend.tasks.cnndm.task import CNNDM | |
| # from src.backend.tasks.cnndm.task_v2 import CNNDMv2 | |
| # from src.backend.tasks.selfcheckgpt.task import SelfCheckGpt | |
| def run_evaluation(eval_request: EvalRequest, task_names, num_fewshot, batch_size, device, use_cache=None, limit=None, max_nb_samples=100) -> dict: | |
| if limit: | |
| print("WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT.") | |
| # try: | |
| # include_task_folder("src/backend/tasks/") | |
| # except: | |
| # include_path("src/backend/tasks") | |
| # initialize_tasks('INFO') | |
| # https://github.com/EleutherAI/lm-evaluation-harness/blob/main/docs/interface.md#external-library-usage | |
| # indexes all tasks from the `lm_eval/tasks` subdirectory. | |
| # Alternatively, you can set `TaskManager(include_path="path/to/my/custom/task/configs")` | |
| # to include a set of tasks in a separate directory. | |
| task_manager = TaskManager(include_path="src/backend/probing_tasks") | |
| if "gpt" in eval_request.model: | |
| model = "openai-chat-completions" | |
| else: | |
| model = "hf-auto" | |
| print(f"Considered Tasks (after overriding): {task_names}") | |
| print(f"model_args: {eval_request.get_model_args()}") | |
| results = evaluator.simple_evaluate(model=model, # "hf-causal-experimental", # "hf-causal" how can i make this work for | |
| model_args=eval_request.get_model_args(), | |
| task_manager=task_manager, | |
| tasks=task_names, | |
| num_fewshot=num_fewshot, | |
| batch_size=batch_size, | |
| max_batch_size=8, | |
| device=device, | |
| use_cache=use_cache, | |
| limit=limit, | |
| # task_manager=task_manager, | |
| # include_path="/Users/chaeeunlee/Documents/VSC_workspaces/biomed_probing_leaderboard/src/backend/tasks", | |
| write_out=True) | |
| results["config"]["model_dtype"] = eval_request.precision | |
| results["config"]["model_name"] = eval_request.model | |
| results["config"]["model_sha"] = eval_request.revision | |
| if max_nb_samples is not None: | |
| if 'samples' in results: | |
| samples = results['samples'] | |
| for task_name in samples.keys(): | |
| if len(samples[task_name]) > max_nb_samples: | |
| results['samples'][task_name] = results['samples'][task_name][:max_nb_samples] | |
| # print(evaluator.make_table(results)) | |
| return results | |