Spaces:
Paused
Paused
import os,sys | |
# install environment goods | |
#os.system("pip -q install dgl -f https://data.dgl.ai/wheels/cu113/repo.html") | |
os.system('pip install dgl==1.0.2+cu116 -f https://data.dgl.ai/wheels/cu116/repo.html') | |
#os.system('pip install gradio') | |
os.environ["DGLBACKEND"] = "pytorch" | |
#os.system(f'pip install -r ./PROTEIN_GENERATOR/requirements.txt') | |
print('Modules installed') | |
#os.system('pip install --force gradio==3.36.1') | |
#os.system('pip install gradio_client==0.2.7') | |
#os.system('pip install \"numpy<2\"') | |
#os.system('pip install numpy --upgrade') | |
#os.system('pip install --force numpy==1.24.1') | |
if not os.path.exists('./SEQDIFF_230205_dssp_hotspots_25mask_EQtasks_mod30.pt'): | |
print('Downloading model weights 1') | |
os.system('wget http://files.ipd.uw.edu/pub/sequence_diffusion/checkpoints/SEQDIFF_230205_dssp_hotspots_25mask_EQtasks_mod30.pt') | |
print('Successfully Downloaded') | |
if not os.path.exists('./SEQDIFF_221219_equalTASKS_nostrSELFCOND_mod30.pt'): | |
print('Downloading model weights 2') | |
os.system('wget http://files.ipd.uw.edu/pub/sequence_diffusion/checkpoints/SEQDIFF_221219_equalTASKS_nostrSELFCOND_mod30.pt') | |
print('Successfully Downloaded') | |
import numpy as np | |
import gradio as gr | |
import py3Dmol | |
from io import StringIO | |
import json | |
import secrets | |
import copy | |
import matplotlib.pyplot as plt | |
from utils.sampler import HuggingFace_sampler | |
from utils.parsers_inference import parse_pdb | |
from model.util import writepdb | |
from utils.inpainting_util import * | |
plt.rcParams.update({'font.size': 13}) | |
with open('./tmp/args.json','r') as f: | |
args = json.load(f) | |
# manually set checkpoint to load | |
args['checkpoint'] = None | |
args['dump_trb'] = False | |
args['dump_args'] = True | |
args['save_best_plddt'] = True | |
args['T'] = 25 | |
args['strand_bias'] = 0.0 | |
args['loop_bias'] = 0.0 | |
args['helix_bias'] = 0.0 | |
def protein_diffusion_model(sequence, seq_len, helix_bias, strand_bias, loop_bias, | |
secondary_structure, aa_bias, aa_bias_potential, | |
#target_charge, target_ph, charge_potential, | |
num_steps, noise, hydrophobic_target_score, hydrophobic_potential, | |
contigs, pssm, seq_mask, str_mask, rewrite_pdb): | |
dssp_checkpoint = './SEQDIFF_230205_dssp_hotspots_25mask_EQtasks_mod30.pt' | |
og_checkpoint = './SEQDIFF_221219_equalTASKS_nostrSELFCOND_mod30.pt' | |
model_args = copy.deepcopy(args) | |
# make sampler | |
S = HuggingFace_sampler(args=model_args) | |
# get random prefix | |
S.out_prefix = './tmp/'+secrets.token_hex(nbytes=10).upper() | |
# set args | |
S.args['checkpoint'] = None | |
S.args['dump_trb'] = False | |
S.args['dump_args'] = True | |
S.args['save_best_plddt'] = True | |
S.args['T'] = 20 | |
S.args['strand_bias'] = 0.0 | |
S.args['loop_bias'] = 0.0 | |
S.args['helix_bias'] = 0.0 | |
S.args['potentials'] = None | |
S.args['potential_scale'] = None | |
S.args['aa_composition'] = None | |
# get sequence if entered and make sure all chars are valid | |
alt_aa_dict = {'B':['D','N'],'J':['I','L'],'U':['C'],'Z':['E','Q'],'O':['K']} | |
if sequence not in ['',None]: | |
L = len(sequence) | |
aa_seq = [] | |
for aa in sequence.upper(): | |
if aa in alt_aa_dict.keys(): | |
aa_seq.append(np.random.choice(alt_aa_dict[aa])) | |
else: | |
aa_seq.append(aa) | |
S.args['sequence'] = aa_seq | |
elif contigs not in ['',None]: | |
S.args['contigs'] = [contigs] | |
else: | |
S.args['contigs'] = [f'{seq_len}'] | |
L = int(seq_len) | |
print('DEBUG: ',rewrite_pdb) | |
if rewrite_pdb not in ['',None]: | |
S.args['pdb'] = rewrite_pdb.name | |
if seq_mask not in ['',None]: | |
S.args['inpaint_seq'] = [seq_mask] | |
if str_mask not in ['',None]: | |
S.args['inpaint_str'] = [str_mask] | |
if secondary_structure in ['',None]: | |
secondary_structure = None | |
else: | |
secondary_structure = ''.join(['E' if x == 'S' else x for x in secondary_structure]) | |
if L < len(secondary_structure): | |
secondary_structure = secondary_structure[:len(sequence)] | |
elif L == len(secondary_structure): | |
pass | |
else: | |
dseq = L - len(secondary_structure) | |
secondary_structure += secondary_structure[-1]*dseq | |
# potentials | |
potential_list = [] | |
potential_bias_list = [] | |
if aa_bias not in ['',None]: | |
potential_list.append('aa_bias') | |
S.args['aa_composition'] = aa_bias | |
if aa_bias_potential in ['',None]: | |
aa_bias_potential = 3 | |
potential_bias_list.append(str(aa_bias_potential)) | |
''' | |
if target_charge not in ['',None]: | |
potential_list.append('charge') | |
if charge_potential in ['',None]: | |
charge_potential = 1 | |
potential_bias_list.append(str(charge_potential)) | |
S.args['target_charge'] = float(target_charge) | |
if target_ph in ['',None]: | |
target_ph = 7.4 | |
S.args['target_pH'] = float(target_ph) | |
''' | |
if hydrophobic_target_score not in ['',None]: | |
potential_list.append('hydrophobic') | |
S.args['hydrophobic_score'] = float(hydrophobic_target_score) | |
if hydrophobic_potential in ['',None]: | |
hydrophobic_potential = 3 | |
potential_bias_list.append(str(hydrophobic_potential)) | |
if pssm not in ['',None]: | |
potential_list.append('PSSM') | |
potential_bias_list.append('5') | |
S.args['PSSM'] = pssm.name | |
if len(potential_list) > 0: | |
S.args['potentials'] = ','.join(potential_list) | |
S.args['potential_scale'] = ','.join(potential_bias_list) | |
# normalise secondary_structure bias from range 0-0.3 | |
S.args['secondary_structure'] = secondary_structure | |
S.args['helix_bias'] = helix_bias | |
S.args['strand_bias'] = strand_bias | |
S.args['loop_bias'] = loop_bias | |
# set T | |
if num_steps in ['',None]: | |
S.args['T'] = 20 | |
else: | |
S.args['T'] = int(num_steps) | |
# noise | |
if 'normal' in noise: | |
S.args['sample_distribution'] = noise | |
S.args['sample_distribution_gmm_means'] = [0] | |
S.args['sample_distribution_gmm_variances'] = [1] | |
elif 'gmm2' in noise: | |
S.args['sample_distribution'] = noise | |
S.args['sample_distribution_gmm_means'] = [-1,1] | |
S.args['sample_distribution_gmm_variances'] = [1,1] | |
elif 'gmm3' in noise: | |
S.args['sample_distribution'] = noise | |
S.args['sample_distribution_gmm_means'] = [-1,0,1] | |
S.args['sample_distribution_gmm_variances'] = [1,1,1] | |
if secondary_structure not in ['',None] or helix_bias+strand_bias+loop_bias > 0: | |
S.args['checkpoint'] = dssp_checkpoint | |
S.args['d_t1d'] = 29 | |
print('using dssp checkpoint') | |
else: | |
S.args['checkpoint'] = og_checkpoint | |
S.args['d_t1d'] = 24 | |
print('using og checkpoint') | |
for k,v in S.args.items(): | |
print(f"{k} --> {v}") | |
# init S | |
S.model_init() | |
S.diffuser_init() | |
S.setup() | |
# sampling loop | |
plddt_data = [] | |
for j in range(S.max_t): | |
print(f'on step {j}') | |
output_seq, output_pdb, plddt = S.take_step_get_outputs(j) | |
plddt_data.append(plddt) | |
yield output_seq, output_pdb, display_pdb(output_pdb), get_plddt_plot(plddt_data, S.max_t) | |
output_seq, output_pdb, plddt = S.get_outputs() | |
yield output_seq, output_pdb, display_pdb(output_pdb), get_plddt_plot(plddt_data, S.max_t) | |
def get_plddt_plot(plddt_data, max_t): | |
x = [i+1 for i in range(len(plddt_data))] | |
fig, ax = plt.subplots(figsize=(15,6)) | |
ax.plot(x,plddt_data,color='#661dbf', linewidth=3,marker='o') | |
ax.set_xticks([i+1 for i in range(max_t)]) | |
ax.set_yticks([(i+1)/10 for i in range(10)]) | |
ax.set_ylim([0,1]) | |
ax.set_ylabel('model confidence (plddt)') | |
ax.set_xlabel('diffusion steps (t)') | |
return fig | |
def display_pdb(path_to_pdb): | |
''' | |
#function to display pdb in py3dmol | |
''' | |
pdb = open(path_to_pdb, "r").read() | |
view = py3Dmol.view(width=500, height=500) | |
view.addModel(pdb, "pdb") | |
view.setStyle({'model': -1}, {"cartoon": {'colorscheme':{'prop':'b','gradient':'roygb','min':0,'max':1}}})#'linear', 'min': 0, 'max': 1, 'colors': ["#ff9ef0","#a903fc",]}}}) | |
view.zoomTo() | |
output = view._make_html().replace("'", '"') | |
print(view._make_html()) | |
x = f"""<!DOCTYPE html><html></center> {output} </center></html>""" # do not use ' in this input | |
return f"""<iframe height="500px" width="100%" name="result" allow="midi; geolocation; microphone; camera; | |
display-capture; encrypted-media;" sandbox="allow-modals allow-forms | |
allow-scripts allow-same-origin allow-popups | |
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" | |
allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>""" | |
''' | |
return f"""<iframe style="width: 100%; height:700px" name="result" allow="midi; geolocation; microphone; camera; | |
display-capture; encrypted-media;" sandbox="allow-modals allow-forms | |
allow-scripts allow-same-origin allow-popups | |
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" | |
allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>""" | |
''' | |
# MOTIF SCAFFOLDING | |
def get_motif_preview(pdb_id, contigs): | |
''' | |
#function to display selected motif in py3dmol | |
''' | |
input_pdb = fetch_pdb(pdb_id=pdb_id.lower()) | |
# rewrite pdb | |
parse = parse_pdb(input_pdb) | |
#output_name = './rewrite_'+input_pdb.split('/')[-1] | |
#writepdb(output_name, torch.tensor(parse_og['xyz']),torch.tensor(parse_og['seq'])) | |
#parse = parse_pdb(output_name) | |
output_name = input_pdb | |
pdb = open(output_name, "r").read() | |
view = py3Dmol.view(width=500, height=500) | |
view.addModel(pdb, "pdb") | |
if contigs in ['',0]: | |
contigs = ['0'] | |
else: | |
contigs = [contigs] | |
print('DEBUG: ',contigs) | |
pdb_map = get_mappings(ContigMap(parse,contigs)) | |
print('DEBUG: ',pdb_map) | |
print('DEBUG: ',pdb_map['con_ref_idx0']) | |
roi = [x[1]-1 for x in pdb_map['con_ref_pdb_idx']] | |
colormap = {0:'#D3D3D3', 1:'#F74CFF'} | |
colors = {i+1: colormap[1] if i in roi else colormap[0] for i in range(parse['xyz'].shape[0])} | |
view.setStyle({"cartoon": {"colorscheme": {"prop": "resi", "map": colors}}}) | |
view.zoomTo() | |
output = view._make_html().replace("'", '"') | |
print(view._make_html()) | |
x = f"""<!DOCTYPE html><html></center> {output} </center></html>""" # do not use ' in this input | |
return f"""<iframe height="500px" width="100%" name="result" allow="midi; geolocation; microphone; camera; | |
display-capture; encrypted-media;" sandbox="allow-modals allow-forms | |
allow-scripts allow-same-origin allow-popups | |
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" | |
allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>""", output_name | |
def fetch_pdb(pdb_id=None): | |
if pdb_id is None or pdb_id == "": | |
return None | |
else: | |
os.system(f"wget -qnc https://files.rcsb.org/view/{pdb_id}.pdb") | |
return f"{pdb_id}.pdb" | |
# MSA AND PSSM GUIDANCE | |
def save_pssm(file_upload): | |
filename = file_upload.name | |
orig_name = file_upload.orig_name | |
if filename.split('.')[-1] in ['fasta', 'a3m']: | |
return msa_to_pssm(file_upload) | |
return filename | |
def msa_to_pssm(msa_file): | |
# Define the lookup table for converting amino acids to indices | |
aa_to_index = {'A': 0, 'R': 1, 'N': 2, 'D': 3, 'C': 4, 'Q': 5, 'E': 6, 'G': 7, 'H': 8, 'I': 9, 'L': 10, | |
'K': 11, 'M': 12, 'F': 13, 'P': 14, 'S': 15, 'T': 16, 'W': 17, 'Y': 18, 'V': 19, 'X': 20, '-': 21} | |
# Open the FASTA file and read the sequences | |
records = list(SeqIO.parse(msa_file.name, "fasta")) | |
assert len(records) >= 1, "MSA must contain more than one protein sequecne." | |
first_seq = str(records[0].seq) | |
aligned_seqs = [first_seq] | |
# print(aligned_seqs) | |
# Perform sequence alignment using the Needleman-Wunsch algorithm | |
aligner = Align.PairwiseAligner() | |
aligner.open_gap_score = -0.7 | |
aligner.extend_gap_score = -0.3 | |
for record in records[1:]: | |
alignment = aligner.align(first_seq, str(record.seq))[0] | |
alignment = alignment.format().split("\n") | |
al1 = alignment[0] | |
al2 = alignment[2] | |
al1_fin = "" | |
al2_fin = "" | |
percent_gap = al2.count('-')/ len(al2) | |
if percent_gap > 0.4: | |
continue | |
for i in range(len(al1)): | |
if al1[i] != '-': | |
al1_fin += al1[i] | |
al2_fin += al2[i] | |
aligned_seqs.append(str(al2_fin)) | |
# Get the length of the aligned sequences | |
aligned_seq_length = len(first_seq) | |
# Initialize the position scoring matrix | |
matrix = np.zeros((22, aligned_seq_length)) | |
# Iterate through the aligned sequences and count the amino acids at each position | |
for seq in aligned_seqs: | |
#print(seq) | |
for i in range(aligned_seq_length): | |
if i == len(seq): | |
break | |
amino_acid = seq[i] | |
if amino_acid.upper() not in aa_to_index.keys(): | |
continue | |
else: | |
aa_index = aa_to_index[amino_acid.upper()] | |
matrix[aa_index, i] += 1 | |
# Normalize the counts to get the frequency of each amino acid at each position | |
matrix /= len(aligned_seqs) | |
print(len(aligned_seqs)) | |
matrix[20:,]=0 | |
outdir = ".".join(msa_file.name.split('.')[:-1]) + ".csv" | |
np.savetxt(outdir, matrix[:21,:].T, delimiter=",") | |
return outdir | |
def get_pssm(fasta_msa, input_pssm): | |
if input_pssm not in ['',None]: | |
outdir = input_pssm.name | |
else: | |
outdir = save_pssm(fasta_msa) | |
pssm = np.loadtxt(outdir, delimiter=",", dtype=float) | |
fig, ax = plt.subplots(figsize=(15,6)) | |
plt.imshow(torch.permute(torch.tensor(pssm),(1,0))) | |
return fig, outdir | |
#toggle options | |
def toggle_seq_input(choice): | |
if choice == "protein length": | |
return gr.update(visible=True, value=None), gr.update(visible=False, value=None) | |
elif choice == "custom sequence": | |
return gr.update(visible=False, value=None), gr.update(visible=True, value=None) | |
def toggle_secondary_structure(choice): | |
if choice == "sliders": | |
return gr.update(visible=True, value=None),gr.update(visible=True, value=None),gr.update(visible=True, value=None),gr.update(visible=False, value=None) | |
elif choice == "explicit": | |
return gr.update(visible=False, value=None),gr.update(visible=False, value=None),gr.update(visible=False, value=None),gr.update(visible=True, value=None) | |
# Define the Gradio interface | |
with gr.Blocks(theme='ParityError/Interstellar') as demo: | |
#with gr.Row().style(equal_height=False): | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Tabs(): | |
with gr.TabItem("Inputs"): | |
gr.Markdown("""## INPUTS""") | |
gr.Markdown("""#### Start Sequence | |
Specify the protein length for complete unconditional generation, or scaffold a motif (or your name) using the custom sequence input""") | |
seq_opt = gr.Radio(["protein length","custom sequence"], label="How would you like to specify the starting sequence?", value='protein length') | |
sequence = gr.Textbox(label="custom sequence", lines=1, placeholder='AMINO ACIDS: A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y\n MASK TOKEN: X', visible=False) | |
seq_len = gr.Slider(minimum=5.0, maximum=250.0, label="protein length", value=100, visible=True) | |
seq_opt.change(fn=toggle_seq_input, | |
inputs=[seq_opt], | |
outputs=[seq_len, sequence], | |
queue=False) | |
gr.Markdown("""### Optional Parameters""") | |
with gr.Accordion(label='Secondary Structure',open=True): | |
gr.Markdown("""Try changing the sliders or inputing explicit secondary structure conditioning for each residue""") | |
sec_str_opt = gr.Radio(["sliders","explicit"], label="How would you like to specify secondary structure?", value='sliders') | |
secondary_structure = gr.Textbox(label="secondary structure", lines=1, placeholder='HELIX = H STRAND = S LOOP = L MASK = X(must be the same length as input sequence)', visible=False) | |
with gr.Column(): | |
helix_bias = gr.Slider(minimum=0.0, maximum=0.05, label="helix bias", visible=True) | |
strand_bias = gr.Slider(minimum=0.0, maximum=0.05, label="strand bias", visible=True) | |
loop_bias = gr.Slider(minimum=0.0, maximum=0.20, label="loop bias", visible=True) | |
sec_str_opt.change(fn=toggle_secondary_structure, | |
inputs=[sec_str_opt], | |
outputs=[helix_bias,strand_bias,loop_bias,secondary_structure], | |
queue=False) | |
with gr.Accordion(label='Amino Acid Compositional Bias',open=False): | |
gr.Markdown("""Bias sequence composition for particular amino acids by specifying the one letter code followed by the fraction to bias. This can be input as a list for example: W0.2,E0.1""") | |
with gr.Row(): | |
aa_bias = gr.Textbox(label="aa bias", lines=1, placeholder='specify one letter AA and fraction to bias, for example W0.1 or M0.1,K0.1' ) | |
aa_bias_potential = gr.Textbox(label="aa bias scale", lines=1, placeholder='AA Bias potential scale (recomended range 1.0-5.0)') | |
''' | |
with gr.Accordion(label='Charge Bias',open=False): | |
gr.Markdown("""Bias for a specified net charge at a particular pH using the boxes below""") | |
with gr.Row(): | |
target_charge = gr.Textbox(label="net charge", lines=1, placeholder='net charge to target') | |
target_ph = gr.Textbox(label="pH", lines=1, placeholder='pH at which net charge is desired') | |
charge_potential = gr.Textbox(label="charge potential scale", lines=1, placeholder='charge potential scale (recomended range 1.0-5.0)') | |
''' | |
with gr.Accordion(label='Hydrophobic Bias',open=False): | |
gr.Markdown("""Bias for or against hydrophobic composition, to get more soluble proteins, bias away with a negative target score (ex. -5)""") | |
with gr.Row(): | |
hydrophobic_target_score = gr.Textbox(label="hydrophobic score", lines=1, placeholder='hydrophobic score to target (negative score is good for solublility)') | |
hydrophobic_potential = gr.Textbox(label="hydrophobic potential scale", lines=1, placeholder='hydrophobic potential scale (recomended range 1.0-2.0)') | |
with gr.Accordion(label='Diffusion Params',open=False): | |
gr.Markdown("""Increasing T to more steps can be helpful for harder design challenges, sampling from different distributions can change the sequence and structural composition""") | |
with gr.Row(): | |
num_steps = gr.Textbox(label="T", lines=1, placeholder='number of diffusion steps (25 or less will speed things up)') | |
noise = gr.Dropdown(['normal','gmm2 [-1,1]','gmm3 [-1,0,1]'], label='noise type', value='normal') | |
with gr.TabItem("Motif Selection"): | |
gr.Markdown("""### Motif Selection Preview""") | |
gr.Markdown('Contigs explained: to grab residues (seq and str) on a pdb chain you will provide the chain letter followed by a range of residues as indexed in the pdb file for example (A3-10) is the syntax to select residues 3-10 on chain A (the chain always needs to be specified). To add diffused residues to either side of this motif you can specify a range or discrete value without a chain letter infront. To add 15 residues before the motif and 20-30 residues (randomly sampled) after use the following syntax: 15,A3-10,20-30 commas are used to separate regions selected from the pdb and designed (diffused) resiudes which will be added. ') | |
pdb_id_code = gr.Textbox(label="PDB ID", lines=1, placeholder='INPUT PDB ID TO FETCH (ex. 1DPX)', visible=True) | |
contigs = gr.Textbox(label="contigs", lines=1, placeholder='specify contigs to grab particular residues from pdb ()', visible=True) | |
gr.Markdown('Using the same contig syntax, seq or str of input motif residues can be masked, allowing the model to hold strucutre fixed and design sequence or vice-versa') | |
with gr.Row(): | |
seq_mask = gr.Textbox(label='seq mask',lines=1,placeholder='input residues to mask sequence') | |
str_mask = gr.Textbox(label='str mask',lines=1,placeholder='input residues to mask structure') | |
preview_viewer = gr.HTML() | |
rewrite_pdb = gr.File(label='PDB file') | |
preview_btn = gr.Button("Preview Motif") | |
with gr.TabItem("MSA to PSSM"): | |
gr.Markdown("""### MSA to PSSM Generation""") | |
gr.Markdown('input either an MSA or PSSM to guide the model toward generating samples within your family of interest') | |
with gr.Row(): | |
fasta_msa = gr.File(label='MSA') | |
input_pssm = gr.File(label='PSSM (.csv)') | |
pssm = gr.File(label='Generated PSSM') | |
pssm_view = gr.Plot(label='PSSM Viewer') | |
pssm_gen_btn = gr.Button("Generate PSSM") | |
btn = gr.Button("GENERATE") | |
#with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("""## OUTPUTS""") | |
gr.Markdown("""#### Confidence score for generated structure at each timestep""") | |
plddt_plot = gr.Plot(label='plddt at step t') | |
gr.Markdown("""#### Output protein sequnece""") | |
output_seq = gr.Textbox(label="sequence") | |
gr.Markdown("""#### Download PDB file""") | |
output_pdb = gr.File(label="PDB file") | |
gr.Markdown("""#### Structure viewer""") | |
output_viewer = gr.HTML() | |
''' | |
gr.Markdown("""### Don't know where to get started? Click on an example below to try it out!""") | |
gr.Examples( | |
[["","125",0.0,0.0,0.2,"","","","20","normal",'','','',None,'','',None], | |
["","100",0.0,0.0,0.0,"","W0.2","2","20","normal",'','','',None,'','',None], | |
# ["","100",0.0,0.0,0.0, | |
# "XXHHHHHHHHHXXXXXXXHHHHHHHHHXXXXXXXHHHHHHHHXXXXSSSSSSSSSSSXXXXXXXXSSSSSSSSSSSSXXXXXXXSSSSSSSSSXXXXXXX", | |
# "","","25","normal",'','','',None,'','',None], | |
# ["XXXXXXXXXXXXXXXXXXXXXXXXXIPDXXXXXXXXXXXXXXXXXXXXXXPEPSEQXXXXXXXXXXXXXXXXXXXXXXXXXXIPDXXXXXXXXXXXXXXXXXXX", | |
# "",0.0,0.0,0.0,"","","","25","normal",'','','',None,'','',None], | |
# ["","",0.0,0.0,0.0,"","","","25","normal",'','', | |
# '9,D10-11,8,D20-20,4,D25-35,65,D101-101,2,D104-105,8,D114-116,15,D132-138,6,D145-145,2,D148-148,12,D161-161,3', | |
# './tmp/PSSM_lysozyme.csv', | |
# 'D25-25,D27-31,D33-35,D132-137', | |
# 'D26-26','./tmp/150l.pdb'] | |
], | |
inputs=[sequence, | |
seq_len, | |
helix_bias, | |
strand_bias, | |
loop_bias, | |
secondary_structure, | |
aa_bias, | |
aa_bias_potential, | |
#target_charge, | |
#target_ph, | |
#charge_potential, | |
num_steps, | |
noise, | |
hydrophobic_target_score, | |
hydrophobic_potential, | |
contigs, | |
pssm, | |
seq_mask, | |
str_mask, | |
rewrite_pdb], | |
outputs=[output_seq, | |
output_pdb, | |
output_viewer, | |
plddt_plot], | |
fn=protein_diffusion_model, | |
) | |
''' | |
preview_btn.click(get_motif_preview,[pdb_id_code, contigs],[preview_viewer, rewrite_pdb]) | |
pssm_gen_btn.click(get_pssm,[fasta_msa,input_pssm],[pssm_view, pssm]) | |
btn.click(protein_diffusion_model, | |
[sequence, | |
seq_len, | |
helix_bias, | |
strand_bias, | |
loop_bias, | |
secondary_structure, | |
aa_bias, | |
aa_bias_potential, | |
#target_charge, | |
#target_ph, | |
#charge_potential, | |
num_steps, | |
noise, | |
hydrophobic_target_score, | |
hydrophobic_potential, | |
contigs, | |
pssm, | |
seq_mask, | |
str_mask, | |
rewrite_pdb], | |
[output_seq, | |
output_pdb, | |
output_viewer, | |
plddt_plot]) | |
demo.queue() | |
demo.launch(debug=True) | |