Delete app.py
Browse files
app.py
DELETED
|
@@ -1,1022 +0,0 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import requests
|
| 3 |
-
import pandas as pd
|
| 4 |
-
import plotly.graph_objects as go
|
| 5 |
-
from datetime import datetime
|
| 6 |
-
import os
|
| 7 |
-
|
| 8 |
-
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 9 |
-
|
| 10 |
-
target_models = {
|
| 11 |
-
"openfree/flux-lora-korea-palace": "https://huggingface.co/openfree/flux-lora-korea-palace",
|
| 12 |
-
"seawolf2357/hanbok": "https://huggingface.co/seawolf2357/hanbok",
|
| 13 |
-
"LGAI-EXAONE/EXAONE-3.5-32B-Instruct": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.5-32B-Instruct",
|
| 14 |
-
"LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct",
|
| 15 |
-
"LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct",
|
| 16 |
-
"ginipick/flux-lora-eric-cat": "https://huggingface.co/ginipick/flux-lora-eric-cat",
|
| 17 |
-
"seawolf2357/flux-lora-car-rolls-royce": "https://huggingface.co/seawolf2357/flux-lora-car-rolls-royce",
|
| 18 |
-
"moreh/Llama-3-Motif-102B-Instruct": "https://huggingface.co/moreh/Llama-3-Motif-102B-Instruct",
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
"NCSOFT/VARCO-VISION-14B": "https://huggingface.co/NCSOFT/VARCO-VISION-14B",
|
| 22 |
-
"NCSOFT/Llama-VARCO-8B-Instruct": "https://huggingface.co/NCSOFT/Llama-VARCO-8B-Instruct",
|
| 23 |
-
"NCSOFT/VARCO-VISION-14B-HF": "https://huggingface.co/NCSOFT/VARCO-VISION-14B-HF",
|
| 24 |
-
|
| 25 |
-
"Saxo/Linkbricks-Horizon-AI-Korean-Gemma-2-sft-dpo-27B": "https://huggingface.co/Saxo/Linkbricks-Horizon-AI-Korean-Gemma-2-sft-dpo-27B",
|
| 26 |
-
"AALF/gemma-2-27b-it-SimPO-37K": "https://huggingface.co/AALF/gemma-2-27b-it-SimPO-37K",
|
| 27 |
-
"nbeerbower/mistral-nemo-wissenschaft-12B": "https://huggingface.co/nbeerbower/mistral-nemo-wissenschaft-12B",
|
| 28 |
-
"Saxo/Linkbricks-Horizon-AI-Korean-Mistral-Nemo-sft-dpo-12B": "https://huggingface.co/Saxo/Linkbricks-Horizon-AI-Korean-Mistral-Nemo-sft-dpo-12B",
|
| 29 |
-
"princeton-nlp/gemma-2-9b-it-SimPO": "https://huggingface.co/princeton-nlp/gemma-2-9b-it-SimPO",
|
| 30 |
-
"migtissera/Tess-v2.5-Gemma-2-27B-alpha": "https://huggingface.co/migtissera/Tess-v2.5-Gemma-2-27B-alpha",
|
| 31 |
-
"DeepMount00/Llama-3.1-8b-Ita": "https://huggingface.co/DeepMount00/Llama-3.1-8b-Ita",
|
| 32 |
-
"cognitivecomputations/dolphin-2.9.3-mistral-nemo-12b": "https://huggingface.co/cognitivecomputations/dolphin-2.9.3-mistral-nemo-12b",
|
| 33 |
-
"ai-human-lab/EEVE-Korean_Instruct-10.8B-expo": "https://huggingface.co/ai-human-lab/EEVE-Korean_Instruct-10.8B-expo",
|
| 34 |
-
"VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct": "https://huggingface.co/VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct",
|
| 35 |
-
"Saxo/Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B": "https://huggingface.co/Saxo/Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B",
|
| 36 |
-
"AIDX-ktds/ktdsbaseLM-v0.12-based-on-openchat3.5": "https://huggingface.co/AIDX-ktds/ktdsbaseLM-v0.12-based-on-openchat3.5",
|
| 37 |
-
"mlabonne/Daredevil-8B-abliterated": "https://huggingface.co/mlabonne/Daredevil-8B-abliterated",
|
| 38 |
-
"ENERGY-DRINK-LOVE/eeve_dpo-v3": "https://huggingface.co/ENERGY-DRINK-LOVE/eeve_dpo-v3",
|
| 39 |
-
"migtissera/Trinity-2-Codestral-22B": "https://huggingface.co/migtissera/Trinity-2-Codestral-22B",
|
| 40 |
-
"Saxo/Linkbricks-Horizon-AI-Korean-llama3.1-sft-rlhf-dpo-8B": "https://huggingface.co/Saxo/Linkbricks-Horizon-AI-Korean-llama3.1-sft-rlhf-dpo-8B",
|
| 41 |
-
"mlabonne/Daredevil-8B-abliterated-dpomix": "https://huggingface.co/mlabonne/Daredevil-8B-abliterated-dpomix",
|
| 42 |
-
"yanolja/EEVE-Korean-Instruct-10.8B-v1.0": "https://huggingface.co/yanolja/EEVE-Korean-Instruct-10.8B-v1.0",
|
| 43 |
-
"vicgalle/Configurable-Llama-3.1-8B-Instruct": "https://huggingface.co/vicgalle/Configurable-Llama-3.1-8B-Instruct",
|
| 44 |
-
"T3Q-LLM/T3Q-LLM1-sft1.0-dpo1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM1-sft1.0-dpo1.0",
|
| 45 |
-
"Eurdem/Defne-llama3.1-8B": "https://huggingface.co/Eurdem/Defne-llama3.1-8B",
|
| 46 |
-
"BAAI/Infinity-Instruct-7M-Gen-Llama3_1-8B": "https://huggingface.co/BAAI/Infinity-Instruct-7M-Gen-Llama3_1-8B",
|
| 47 |
-
"BAAI/Infinity-Instruct-3M-0625-Llama3-8B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Llama3-8B",
|
| 48 |
-
"T3Q-LLM/T3Q-LLM-sft1.0-dpo1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM-sft1.0-dpo1.0",
|
| 49 |
-
"BAAI/Infinity-Instruct-7M-0729-Llama3_1-8B": "https://huggingface.co/BAAI/Infinity-Instruct-7M-0729-Llama3_1-8B",
|
| 50 |
-
"mightbe/EEVE-10.8B-Multiturn": "https://huggingface.co/mightbe/EEVE-10.8B-Multiturn",
|
| 51 |
-
"hyemijo/omed-llama3.1-8b": "https://huggingface.co/hyemijo/omed-llama3.1-8b",
|
| 52 |
-
"yanolja/Bookworm-10.7B-v0.4-DPO": "https://huggingface.co/yanolja/Bookworm-10.7B-v0.4-DPO",
|
| 53 |
-
"algograp-Inc/algograpV4": "https://huggingface.co/algograp-Inc/algograpV4",
|
| 54 |
-
"lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top75": "https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top75",
|
| 55 |
-
"chihoonlee10/T3Q-LLM-MG-DPO-v1.0": "https://huggingface.co/chihoonlee10/T3Q-LLM-MG-DPO-v1.0",
|
| 56 |
-
"vicgalle/Configurable-Hermes-2-Pro-Llama-3-8B": "https://huggingface.co/vicgalle/Configurable-Hermes-2-Pro-Llama-3-8B",
|
| 57 |
-
"RLHFlow/LLaMA3-iterative-DPO-final": "https://huggingface.co/RLHFlow/LLaMA3-iterative-DPO-final",
|
| 58 |
-
"SEOKDONG/llama3.1_korean_v0.1_sft_by_aidx": "https://huggingface.co/SEOKDONG/llama3.1_korean_v0.1_sft_by_aidx",
|
| 59 |
-
"spow12/Ko-Qwen2-7B-Instruct": "https://huggingface.co/spow12/Ko-Qwen2-7B-Instruct",
|
| 60 |
-
"BAAI/Infinity-Instruct-3M-0625-Qwen2-7B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Qwen2-7B",
|
| 61 |
-
"lightblue/suzume-llama-3-8B-multilingual-orpo-borda-half": "https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-half",
|
| 62 |
-
"T3Q-LLM/T3Q-LLM1-CV-v2.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM1-CV-v2.0",
|
| 63 |
-
"migtissera/Trinity-2-Codestral-22B-v0.2": "https://huggingface.co/migtissera/Trinity-2-Codestral-22B-v0.2",
|
| 64 |
-
"sinjy1203/EEVE-Korean-Instruct-10.8B-v1.0-Grade-Retrieval": "https://huggingface.co/sinjy1203/EEVE-Korean-Instruct-10.8B-v1.0-Grade-Retrieval",
|
| 65 |
-
"MaziyarPanahi/Llama-3-8B-Instruct-v0.10": "https://huggingface.co/MaziyarPanahi/Llama-3-8B-Instruct-v0.10",
|
| 66 |
-
"MaziyarPanahi/Llama-3-8B-Instruct-v0.9": "https://huggingface.co/MaziyarPanahi/Llama-3-8B-Instruct-v0.9",
|
| 67 |
-
"zhengr/MixTAO-7Bx2-MoE-v8.1": "https://huggingface.co/zhengr/MixTAO-7Bx2-MoE-v8.1",
|
| 68 |
-
"TIGER-Lab/MAmmoTH2-8B-Plus": "https://huggingface.co/TIGER-Lab/MAmmoTH2-8B-Plus",
|
| 69 |
-
"OpenBuddy/openbuddy-qwen1.5-14b-v21.1-32k": "https://huggingface.co/OpenBuddy/openbuddy-qwen1.5-14b-v21.1-32k",
|
| 70 |
-
"haoranxu/Llama-3-Instruct-8B-CPO-SimPO": "https://huggingface.co/haoranxu/Llama-3-Instruct-8B-CPO-SimPO",
|
| 71 |
-
"Weyaxi/Einstein-v7-Qwen2-7B": "https://huggingface.co/Weyaxi/Einstein-v7-Qwen2-7B",
|
| 72 |
-
"DKYoon/kosolar-hermes-test": "https://huggingface.co/DKYoon/kosolar-hermes-test",
|
| 73 |
-
"vilm/Quyen-Pro-v0.1": "https://huggingface.co/vilm/Quyen-Pro-v0.1",
|
| 74 |
-
"chihoonlee10/T3Q-LLM-MG-v1.0": "https://huggingface.co/chihoonlee10/T3Q-LLM-MG-v1.0",
|
| 75 |
-
"lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top25": "https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top25",
|
| 76 |
-
"ai-human-lab/EEVE-Korean-10.8B-RAFT": "https://huggingface.co/ai-human-lab/EEVE-Korean-10.8B-RAFT",
|
| 77 |
-
"princeton-nlp/Llama-3-Base-8B-SFT-RDPO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-RDPO",
|
| 78 |
-
"MaziyarPanahi/Llama-3-8B-Instruct-v0.8": "https://huggingface.co/MaziyarPanahi/Llama-3-8B-Instruct-v0.8",
|
| 79 |
-
"chihoonlee10/T3Q-ko-solar-dpo-v7.0": "https://huggingface.co/chihoonlee10/T3Q-ko-solar-dpo-v7.0",
|
| 80 |
-
"jondurbin/bagel-8b-v1.0": "https://huggingface.co/jondurbin/bagel-8b-v1.0",
|
| 81 |
-
"DeepMount00/Llama-3-8b-Ita": "https://huggingface.co/DeepMount00/Llama-3-8b-Ita",
|
| 82 |
-
"VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct": "https://huggingface.co/VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct",
|
| 83 |
-
"princeton-nlp/Llama-3-Instruct-8B-ORPO-v0.2": "https://huggingface.co/princeton-nlp/Llama-3-Instruct-8B-ORPO-v0.2",
|
| 84 |
-
"AIDX-ktds/ktdsbaseLM-v0.11-based-on-openchat3.5": "https://huggingface.co/AIDX-ktds/ktdsbaseLM-v0.11-based-on-openchat3.5",
|
| 85 |
-
"princeton-nlp/Llama-3-Base-8B-SFT-KTO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-KTO",
|
| 86 |
-
"maywell/Mini_Synatra_SFT": "https://huggingface.co/maywell/Mini_Synatra_SFT",
|
| 87 |
-
"princeton-nlp/Llama-3-Base-8B-SFT-ORPO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-ORPO",
|
| 88 |
-
"princeton-nlp/Llama-3-Instruct-8B-CPO-v0.2": "https://huggingface.co/princeton-nlp/Llama-3-Instruct-8B-CPO-v0.2",
|
| 89 |
-
"spow12/Qwen2-7B-ko-Instruct-orpo-ver_2.0_wo_chat": "https://huggingface.co/spow12/Qwen2-7B-ko-Instruct-orpo-ver_2.0_wo_chat",
|
| 90 |
-
"princeton-nlp/Llama-3-Base-8B-SFT-DPO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-DPO",
|
| 91 |
-
"princeton-nlp/Llama-3-Instruct-8B-ORPO": "https://huggingface.co/princeton-nlp/Llama-3-Instruct-8B-ORPO",
|
| 92 |
-
"lcw99/llama-3-10b-it-kor-extented-chang": "https://huggingface.co/lcw99/llama-3-10b-it-kor-extented-chang",
|
| 93 |
-
"migtissera/Llama-3-8B-Synthia-v3.5": "https://huggingface.co/migtissera/Llama-3-8B-Synthia-v3.5",
|
| 94 |
-
"megastudyedu/M-SOLAR-10.7B-v1.4-dpo": "https://huggingface.co/megastudyedu/M-SOLAR-10.7B-v1.4-dpo",
|
| 95 |
-
"T3Q-LLM/T3Q-LLM-solar10.8-sft-v1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM-solar10.8-sft-v1.0",
|
| 96 |
-
"maywell/Synatra-10.7B-v0.4": "https://huggingface.co/maywell/Synatra-10.7B-v0.4",
|
| 97 |
-
"nlpai-lab/KULLM3": "https://huggingface.co/nlpai-lab/KULLM3",
|
| 98 |
-
"abacusai/Llama-3-Smaug-8B": "https://huggingface.co/abacusai/Llama-3-Smaug-8B",
|
| 99 |
-
"gwonny/nox-solar-10.7b-v4-kolon-ITD-5-v2.1": "https://huggingface.co/gwonny/nox-solar-10.7b-v4-kolon-ITD-5-v2.1",
|
| 100 |
-
"BAAI/Infinity-Instruct-3M-0625-Mistral-7B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Mistral-7B",
|
| 101 |
-
"openchat/openchat_3.5": "https://huggingface.co/openchat/openchat_3.5",
|
| 102 |
-
"T3Q-LLM/T3Q-LLM1-v2.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM1-v2.0",
|
| 103 |
-
"T3Q-LLM/T3Q-LLM1-CV-v1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM1-CV-v1.0",
|
| 104 |
-
"ONS-AI-RESEARCH/ONS-SOLAR-10.7B-v1.1": "https://huggingface.co/ONS-AI-RESEARCH/ONS-SOLAR-10.7B-v1.1",
|
| 105 |
-
"macadeliccc/Samantha-Qwen-2-7B": "https://huggingface.co/macadeliccc/Samantha-Qwen-2-7B",
|
| 106 |
-
"openchat/openchat-3.5-0106": "https://huggingface.co/openchat/openchat-3.5-0106",
|
| 107 |
-
"NousResearch/Nous-Hermes-2-SOLAR-10.7B": "https://huggingface.co/NousResearch/Nous-Hermes-2-SOLAR-10.7B",
|
| 108 |
-
"UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter1": "https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter1",
|
| 109 |
-
"MTSAIR/multi_verse_model": "https://huggingface.co/MTSAIR/multi_verse_model",
|
| 110 |
-
"gwonny/nox-solar-10.7b-v4-kolon-ITD-5-v2.0": "https://huggingface.co/gwonny/nox-solar-10.7b-v4-kolon-ITD-5-v2.0",
|
| 111 |
-
"VIRNECT/llama-3-Korean-8B": "https://huggingface.co/VIRNECT/llama-3-Korean-8B",
|
| 112 |
-
"ENERGY-DRINK-LOVE/SOLAR_merge_DPOv3": "https://huggingface.co/ENERGY-DRINK-LOVE/SOLAR_merge_DPOv3",
|
| 113 |
-
"SeaLLMs/SeaLLMs-v3-7B-Chat": "https://huggingface.co/SeaLLMs/SeaLLMs-v3-7B-Chat",
|
| 114 |
-
"VIRNECT/llama-3-Korean-8B-V2": "https://huggingface.co/VIRNECT/llama-3-Korean-8B-V2",
|
| 115 |
-
"MLP-KTLim/llama-3-Korean-Bllossom-8B": "https://huggingface.co/MLP-KTLim/llama-3-Korean-Bllossom-8B",
|
| 116 |
-
"Magpie-Align/Llama-3-8B-Magpie-Align-v0.3": "https://huggingface.co/Magpie-Align/Llama-3-8B-Magpie-Align-v0.3",
|
| 117 |
-
"cognitivecomputations/Llama-3-8B-Instruct-abliterated-v2": "https://huggingface.co/cognitivecomputations/Llama-3-8B-Instruct-abliterated-v2",
|
| 118 |
-
"SkyOrbis/SKY-Ko-Llama3-8B-lora": "https://huggingface.co/SkyOrbis/SKY-Ko-Llama3-8B-lora",
|
| 119 |
-
"4yo1/llama3-eng-ko-8b-sl5": "https://huggingface.co/4yo1/llama3-eng-ko-8b-sl5",
|
| 120 |
-
"kimwooglae/WebSquareAI-Instruct-llama-3-8B-v0.5.39": "https://huggingface.co/kimwooglae/WebSquareAI-Instruct-llama-3-8B-v0.5.39",
|
| 121 |
-
"ONS-AI-RESEARCH/ONS-SOLAR-10.7B-v1.2": "https://huggingface.co/ONS-AI-RESEARCH/ONS-SOLAR-10.7B-v1.2",
|
| 122 |
-
"lcw99/llama-3-10b-it-kor-extented-chang-pro8": "https://huggingface.co/lcw99/llama-3-10b-it-kor-extented-chang-pro8",
|
| 123 |
-
"BAAI/Infinity-Instruct-3M-0625-Yi-1.5-9B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Yi-1.5-9B",
|
| 124 |
-
"migtissera/Tess-2.0-Llama-3-8B": "https://huggingface.co/migtissera/Tess-2.0-Llama-3-8B",
|
| 125 |
-
"BAAI/Infinity-Instruct-3M-0613-Mistral-7B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0613-Mistral-7B",
|
| 126 |
-
"yeonwoo780/cydinfo-llama3-8b-lora-v01": "https://huggingface.co/yeonwoo780/cydinfo-llama3-8b-lora-v01",
|
| 127 |
-
"vicgalle/ConfigurableSOLAR-10.7B": "https://huggingface.co/vicgalle/ConfigurableSOLAR-10.7B",
|
| 128 |
-
"chihoonlee10/T3Q-ko-solar-jo-v1.0": "https://huggingface.co/chihoonlee10/T3Q-ko-solar-jo-v1.0",
|
| 129 |
-
"Kukedlc/NeuralLLaMa-3-8b-ORPO-v0.4": "https://huggingface.co/Kukedlc/NeuralLLaMa-3-8b-ORPO-v0.4",
|
| 130 |
-
"Edentns/DataVortexS-10.7B-dpo-v1.0": "https://huggingface.co/Edentns/DataVortexS-10.7B-dpo-v1.0",
|
| 131 |
-
"SJ-Donald/SJ-SOLAR-10.7b-DPO": "https://huggingface.co/SJ-Donald/SJ-SOLAR-10.7b-DPO",
|
| 132 |
-
"lemon-mint/gemma-ko-7b-it-v0.40": "https://huggingface.co/lemon-mint/gemma-ko-7b-it-v0.40",
|
| 133 |
-
"GyuHyeonWkdWkdMan/naps-llama-3.1-8b-instruct-v0.3": "https://huggingface.co/GyuHyeonWkdWkdMan/naps-llama-3.1-8b-instruct-v0.3",
|
| 134 |
-
"hyeogi/SOLAR-10.7B-v1.5": "https://huggingface.co/hyeogi/SOLAR-10.7B-v1.5",
|
| 135 |
-
"etri-xainlp/llama3-8b-dpo_v1": "https://huggingface.co/etri-xainlp/llama3-8b-dpo_v1",
|
| 136 |
-
"LDCC/LDCC-SOLAR-10.7B": "https://huggingface.co/LDCC/LDCC-SOLAR-10.7B",
|
| 137 |
-
"chlee10/T3Q-Llama3-8B-Inst-sft1.0": "https://huggingface.co/chlee10/T3Q-Llama3-8B-Inst-sft1.0",
|
| 138 |
-
"lemon-mint/gemma-ko-7b-it-v0.41": "https://huggingface.co/lemon-mint/gemma-ko-7b-it-v0.41",
|
| 139 |
-
"chlee10/T3Q-Llama3-8B-sft1.0-dpo1.0": "https://huggingface.co/chlee10/T3Q-Llama3-8B-sft1.0-dpo1.0",
|
| 140 |
-
"maywell/Synatra-7B-Instruct-v0.3-pre": "https://huggingface.co/maywell/Synatra-7B-Instruct-v0.3-pre",
|
| 141 |
-
"UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter2": "https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter2",
|
| 142 |
-
"hwkwon/S-SOLAR-10.7B-v1.4": "https://huggingface.co/hwkwon/S-SOLAR-10.7B-v1.4",
|
| 143 |
-
"12thD/ko-Llama-3-8B-sft-v0.3": "https://huggingface.co/12thD/ko-Llama-3-8B-sft-v0.3",
|
| 144 |
-
"hkss/hk-SOLAR-10.7B-v1.4": "https://huggingface.co/hkss/hk-SOLAR-10.7B-v1.4",
|
| 145 |
-
"lookuss/test-llilu": "https://huggingface.co/lookuss/test-llilu",
|
| 146 |
-
"chihoonlee10/T3Q-ko-solar-dpo-v3.0": "https://huggingface.co/chihoonlee10/T3Q-ko-solar-dpo-v3.0",
|
| 147 |
-
"chihoonlee10/T3Q-ko-solar-dpo-v1.0": "https://huggingface.co/chihoonlee10/T3Q-ko-solar-dpo-v1.0",
|
| 148 |
-
"lcw99/llama-3-10b-wiki-240709-f": "https://huggingface.co/lcw99/llama-3-10b-wiki-240709-f",
|
| 149 |
-
"Edentns/DataVortexS-10.7B-v0.4": "https://huggingface.co/Edentns/DataVortexS-10.7B-v0.4",
|
| 150 |
-
"princeton-nlp/Llama-3-Instruct-8B-KTO": "https://huggingface.co/princeton-nlp/Llama-3-Instruct-8B-KTO",
|
| 151 |
-
"spow12/kosolar_4.1_sft": "https://huggingface.co/spow12/kosolar_4.1_sft",
|
| 152 |
-
"natong19/Qwen2-7B-Instruct-abliterated": "https://huggingface.co/natong19/Qwen2-7B-Instruct-abliterated",
|
| 153 |
-
"megastudyedu/ME-dpo-7B-v1.1": "https://huggingface.co/megastudyedu/ME-dpo-7B-v1.1",
|
| 154 |
-
"01-ai/Yi-1.5-9B-Chat-16K": "https://huggingface.co/01-ai/Yi-1.5-9B-Chat-16K",
|
| 155 |
-
"Edentns/DataVortexS-10.7B-dpo-v0.1": "https://huggingface.co/Edentns/DataVortexS-10.7B-dpo-v0.1",
|
| 156 |
-
"Alphacode-AI/AlphaMist7B-slr-v4-slow": "https://huggingface.co/Alphacode-AI/AlphaMist7B-slr-v4-slow",
|
| 157 |
-
"chihoonlee10/T3Q-ko-solar-sft-dpo-v1.0": "https://huggingface.co/chihoonlee10/T3Q-ko-solar-sft-dpo-v1.0",
|
| 158 |
-
"hwkwon/S-SOLAR-10.7B-v1.1": "https://huggingface.co/hwkwon/S-SOLAR-10.7B-v1.1",
|
| 159 |
-
"DopeorNope/Dear_My_best_Friends-13B": "https://huggingface.co/DopeorNope/Dear_My_best_Friends-13B",
|
| 160 |
-
"GyuHyeonWkdWkdMan/NAPS-llama-3.1-8b-instruct-v0.3.2": "https://huggingface.co/GyuHyeonWkdWkdMan/NAPS-llama-3.1-8b-instruct-v0.3.2",
|
| 161 |
-
"PathFinderKR/Waktaverse-Llama-3-KO-8B-Instruct": "https://huggingface.co/PathFinderKR/Waktaverse-Llama-3-KO-8B-Instruct",
|
| 162 |
-
"vicgalle/ConfigurableHermes-7B": "https://huggingface.co/vicgalle/ConfigurableHermes-7B",
|
| 163 |
-
"maywell/PiVoT-10.7B-Mistral-v0.2": "https://huggingface.co/maywell/PiVoT-10.7B-Mistral-v0.2",
|
| 164 |
-
"failspy/Meta-Llama-3-8B-Instruct-abliterated-v3": "https://huggingface.co/failspy/Meta-Llama-3-8B-Instruct-abliterated-v3",
|
| 165 |
-
"lemon-mint/gemma-ko-7b-instruct-v0.50": "https://huggingface.co/lemon-mint/gemma-ko-7b-instruct-v0.50",
|
| 166 |
-
"ENERGY-DRINK-LOVE/leaderboard_inst_v1.3_Open-Hermes_LDCC-SOLAR-10.7B_SFT": "https://huggingface.co/ENERGY-DRINK-LOVE/leaderboard_inst_v1.3_Open-Hermes_LDCC-SOLAR-10.7B_SFT",
|
| 167 |
-
"maywell/PiVoT-0.1-early": "https://huggingface.co/maywell/PiVoT-0.1-early",
|
| 168 |
-
"hwkwon/S-SOLAR-10.7B-v1.3": "https://huggingface.co/hwkwon/S-SOLAR-10.7B-v1.3",
|
| 169 |
-
"werty1248/Llama-3-Ko-8B-Instruct-AOG": "https://huggingface.co/werty1248/Llama-3-Ko-8B-Instruct-AOG",
|
| 170 |
-
"Alphacode-AI/AlphaMist7B-slr-v2": "https://huggingface.co/Alphacode-AI/AlphaMist7B-slr-v2",
|
| 171 |
-
"maywell/koOpenChat-sft": "https://huggingface.co/maywell/koOpenChat-sft",
|
| 172 |
-
"lemon-mint/gemma-7b-openhermes-v0.80": "https://huggingface.co/lemon-mint/gemma-7b-openhermes-v0.80",
|
| 173 |
-
"VIRNECT/llama-3-Korean-8B-r-v1": "https://huggingface.co/VIRNECT/llama-3-Korean-8B-r-v1",
|
| 174 |
-
"Alphacode-AI/AlphaMist7B-slr-v1": "https://huggingface.co/Alphacode-AI/AlphaMist7B-slr-v1",
|
| 175 |
-
"Loyola/Mistral-7b-ITmodel": "https://huggingface.co/Loyola/Mistral-7b-ITmodel",
|
| 176 |
-
"VIRNECT/llama-3-Korean-8B-r-v2": "https://huggingface.co/VIRNECT/llama-3-Korean-8B-r-v2",
|
| 177 |
-
"NLPark/AnFeng_v3.1-Avocet": "https://huggingface.co/NLPark/AnFeng_v3.1-Avocet",
|
| 178 |
-
"maywell/Synatra_TbST11B_EP01": "https://huggingface.co/maywell/Synatra_TbST11B_EP01",
|
| 179 |
-
"GritLM/GritLM-7B-KTO": "https://huggingface.co/GritLM/GritLM-7B-KTO",
|
| 180 |
-
"01-ai/Yi-34B-Chat": "https://huggingface.co/01-ai/Yi-34B-Chat",
|
| 181 |
-
"ValiantLabs/Llama3.1-8B-ShiningValiant2": "https://huggingface.co/ValiantLabs/Llama3.1-8B-ShiningValiant2",
|
| 182 |
-
"princeton-nlp/Llama-3-Base-8B-SFT-CPO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-CPO",
|
| 183 |
-
"hyokwan/hkcode_llama3_8b": "https://huggingface.co/hyokwan/hkcode_llama3_8b",
|
| 184 |
-
"UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3": "https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3",
|
| 185 |
-
"yuntaeyang/SOLAR-10.7B-Instructlora_sftt-v1.0": "https://huggingface.co/yuntaeyang/SOLAR-10.7B-Instructlora_sftt-v1.0",
|
| 186 |
-
"juungwon/Llama-3-cs-LoRA": "https://huggingface.co/juungwon/Llama-3-cs-LoRA",
|
| 187 |
-
"gangyeolkim/llama-3-chat": "https://huggingface.co/gangyeolkim/llama-3-chat",
|
| 188 |
-
"mncai/llama2-13b-dpo-v3": "https://huggingface.co/mncai/llama2-13b-dpo-v3",
|
| 189 |
-
"maywell/Synatra-Zephyr-7B-v0.01": "https://huggingface.co/maywell/Synatra-Zephyr-7B-v0.01",
|
| 190 |
-
"ENERGY-DRINK-LOVE/leaderboard_inst_v1.3_deup_LDCC-SOLAR-10.7B_SFT": "https://huggingface.co/ENERGY-DRINK-LOVE/leaderboard_inst_v1.3_deup_LDCC-SOLAR-10.7B_SFT",
|
| 191 |
-
"juungwon/Llama-3-constructionsafety-LoRA": "https://huggingface.co/juungwon/Llama-3-constructionsafety-LoRA",
|
| 192 |
-
"princeton-nlp/Mistral-7B-Base-SFT-SimPO": "https://huggingface.co/princeton-nlp/Mistral-7B-Base-SFT-SimPO",
|
| 193 |
-
"moondriller/solar10B-eugeneparkthebestv2": "https://huggingface.co/moondriller/solar10B-eugeneparkthebestv2",
|
| 194 |
-
"chlee10/T3Q-LLM3-Llama3-sft1.0-dpo1.0": "https://huggingface.co/chlee10/T3Q-LLM3-Llama3-sft1.0-dpo1.0",
|
| 195 |
-
"Edentns/DataVortexS-10.7B-dpo-v1.7": "https://huggingface.co/Edentns/DataVortexS-10.7B-dpo-v1.7",
|
| 196 |
-
"gamzadole/llama3_instruct_tuning_without_pretraing": "https://huggingface.co/gamzadole/llama3_instruct_tuning_without_pretraing",
|
| 197 |
-
"saltlux/Ko-Llama3-Luxia-8B": "https://huggingface.co/saltlux/Ko-Llama3-Luxia-8B",
|
| 198 |
-
"kimdeokgi/ko-pt-model-test1": "https://huggingface.co/kimdeokgi/ko-pt-model-test1",
|
| 199 |
-
"maywell/Synatra-11B-Testbench-2": "https://huggingface.co/maywell/Synatra-11B-Testbench-2",
|
| 200 |
-
"Danielbrdz/Barcenas-14b-Phi-3-medium-ORPO": "https://huggingface.co/Danielbrdz/Barcenas-14b-Phi-3-medium-ORPO",
|
| 201 |
-
"vicgalle/Configurable-Mistral-7B": "https://huggingface.co/vicgalle/Configurable-Mistral-7B",
|
| 202 |
-
"ENERGY-DRINK-LOVE/leaderboard_inst_v1.5_LDCC-SOLAR-10.7B_SFT": "https://huggingface.co/ENERGY-DRINK-LOVE/leaderboard_inst_v1.5_LDCC-SOLAR-10.7B_SFT",
|
| 203 |
-
"beomi/Llama-3-Open-Ko-8B-Instruct-preview": "https://huggingface.co/beomi/Llama-3-Open-Ko-8B-Instruct-preview",
|
| 204 |
-
"Edentns/DataVortexS-10.7B-dpo-v1.3": "https://huggingface.co/Edentns/DataVortexS-10.7B-dpo-v1.3",
|
| 205 |
-
"spow12/Llama3_ko_4.2_sft": "https://huggingface.co/spow12/Llama3_ko_4.2_sft",
|
| 206 |
-
"maywell/Llama-3-Ko-8B-Instruct": "https://huggingface.co/maywell/Llama-3-Ko-8B-Instruct",
|
| 207 |
-
"T3Q-LLM/T3Q-LLM3-NC-v1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM3-NC-v1.0",
|
| 208 |
-
"ehartford/dolphin-2.2.1-mistral-7b": "https://huggingface.co/ehartford/dolphin-2.2.1-mistral-7b",
|
| 209 |
-
"hwkwon/S-SOLAR-10.7B-SFT-v1.3": "https://huggingface.co/hwkwon/S-SOLAR-10.7B-SFT-v1.3",
|
| 210 |
-
"sel303/llama3-instruct-diverce-v2.0": "https://huggingface.co/sel303/llama3-instruct-diverce-v2.0",
|
| 211 |
-
"4yo1/llama3-eng-ko-8b-sl3": "https://huggingface.co/4yo1/llama3-eng-ko-8b-sl3",
|
| 212 |
-
"hkss/hk-SOLAR-10.7B-v1.1": "https://huggingface.co/hkss/hk-SOLAR-10.7B-v1.1",
|
| 213 |
-
"Open-Orca/Mistral-7B-OpenOrca": "https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca",
|
| 214 |
-
"hyokwan/familidata": "https://huggingface.co/hyokwan/familidata",
|
| 215 |
-
"uukuguy/zephyr-7b-alpha-dare-0.85": "https://huggingface.co/uukuguy/zephyr-7b-alpha-dare-0.85",
|
| 216 |
-
"gwonny/nox-solar-10.7b-v4-kolon-all-5": "https://huggingface.co/gwonny/nox-solar-10.7b-v4-kolon-all-5",
|
| 217 |
-
"shleeeee/mistral-ko-tech-science-v1": "https://huggingface.co/shleeeee/mistral-ko-tech-science-v1",
|
| 218 |
-
"Deepnoid/deep-solar-eeve-KorSTS": "https://huggingface.co/Deepnoid/deep-solar-eeve-KorSTS",
|
| 219 |
-
"AIdenU/Mistral-7B-v0.2-ko-Y24_v1.0": "https://huggingface.co/AIdenU/Mistral-7B-v0.2-ko-Y24_v1.0",
|
| 220 |
-
"tlphams/gollm-tendency-45": "https://huggingface.co/tlphams/gollm-tendency-45",
|
| 221 |
-
"realPCH/ko_solra_merge": "https://huggingface.co/realPCH/ko_solra_merge",
|
| 222 |
-
"Cartinoe5930/original-KoRAE-13b": "https://huggingface.co/Cartinoe5930/original-KoRAE-13b",
|
| 223 |
-
"GAI-LLM/Yi-Ko-6B-dpo-v5": "https://huggingface.co/GAI-LLM/Yi-Ko-6B-dpo-v5",
|
| 224 |
-
"Minirecord/Mini_DPO_test02": "https://huggingface.co/Minirecord/Mini_DPO_test02",
|
| 225 |
-
"AIJUUD/juud-Mistral-7B-dpo": "https://huggingface.co/AIJUUD/juud-Mistral-7B-dpo",
|
| 226 |
-
"gwonny/nox-solar-10.7b-v4-kolon-all-10": "https://huggingface.co/gwonny/nox-solar-10.7b-v4-kolon-all-10",
|
| 227 |
-
"jieunhan/TEST_MODEL": "https://huggingface.co/jieunhan/TEST_MODEL",
|
| 228 |
-
"etri-xainlp/kor-llama2-13b-dpo": "https://huggingface.co/etri-xainlp/kor-llama2-13b-dpo",
|
| 229 |
-
"ifuseok/yi-ko-playtus-instruct-v0.2": "https://huggingface.co/ifuseok/yi-ko-playtus-instruct-v0.2",
|
| 230 |
-
"Cartinoe5930/original-KoRAE-13b-3ep": "https://huggingface.co/Cartinoe5930/original-KoRAE-13b-3ep",
|
| 231 |
-
"Trofish/KULLM-RLHF": "https://huggingface.co/Trofish/KULLM-RLHF",
|
| 232 |
-
"wkshin89/Yi-Ko-6B-Instruct-v1.0": "https://huggingface.co/wkshin89/Yi-Ko-6B-Instruct-v1.0",
|
| 233 |
-
"momo/polyglot-ko-12.8b-Chat-QLoRA-Merge": "https://huggingface.co/momo/polyglot-ko-12.8b-Chat-QLoRA-Merge",
|
| 234 |
-
"PracticeLLM/Custom-KoLLM-13B-v5": "https://huggingface.co/PracticeLLM/Custom-KoLLM-13B-v5",
|
| 235 |
-
"BAAI/Infinity-Instruct-3M-0625-Yi-1.5-9B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Yi-1.5-9B",
|
| 236 |
-
"MRAIRR/minillama3_8b_all": "https://huggingface.co/MRAIRR/minillama3_8b_all",
|
| 237 |
-
"failspy/Phi-3-medium-4k-instruct-abliterated-v3": "https://huggingface.co/failspy/Phi-3-medium-4k-instruct-abliterated-v3",
|
| 238 |
-
"DILAB-HYU/koquality-polyglot-12.8b": "https://huggingface.co/DILAB-HYU/koquality-polyglot-12.8b",
|
| 239 |
-
"kyujinpy/Korean-OpenOrca-v3": "https://huggingface.co/kyujinpy/Korean-OpenOrca-v3",
|
| 240 |
-
"4yo1/llama3-eng-ko-8b": "https://huggingface.co/4yo1/llama3-eng-ko-8b",
|
| 241 |
-
"4yo1/llama3-eng-ko-8": "https://huggingface.co/4yo1/llama3-eng-ko-8",
|
| 242 |
-
"4yo1/llama3-eng-ko-8-llama": "https://huggingface.co/4yo1/llama3-eng-ko-8-llama",
|
| 243 |
-
"PracticeLLM/Custom-KoLLM-13B-v2": "https://huggingface.co/PracticeLLM/Custom-KoLLM-13B-v2",
|
| 244 |
-
"kyujinpy/KOR-Orca-Platypus-13B-v2": "https://huggingface.co/kyujinpy/KOR-Orca-Platypus-13B-v2",
|
| 245 |
-
"ghost-x/ghost-7b-alpha": "https://huggingface.co/ghost-x/ghost-7b-alpha",
|
| 246 |
-
"HumanF-MarkrAI/pub-llama-13B-v6": "https://huggingface.co/HumanF-MarkrAI/pub-llama-13B-v6",
|
| 247 |
-
"nlpai-lab/kullm-polyglot-5.8b-v2": "https://huggingface.co/nlpai-lab/kullm-polyglot-5.8b-v2",
|
| 248 |
-
"maywell/Synatra-42dot-1.3B": "https://huggingface.co/maywell/Synatra-42dot-1.3B",
|
| 249 |
-
"yhkim9362/gemma-en-ko-7b-v0.1": "https://huggingface.co/yhkim9362/gemma-en-ko-7b-v0.1",
|
| 250 |
-
"yhkim9362/gemma-en-ko-7b-v0.2": "https://huggingface.co/yhkim9362/gemma-en-ko-7b-v0.2",
|
| 251 |
-
"daekeun-ml/Llama-2-ko-OpenOrca-gugugo-13B": "https://huggingface.co/daekeun-ml/Llama-2-ko-OpenOrca-gugugo-13B",
|
| 252 |
-
"beomi/Yi-Ko-6B": "https://huggingface.co/beomi/Yi-Ko-6B",
|
| 253 |
-
"jojo0217/ChatSKKU5.8B": "https://huggingface.co/jojo0217/ChatSKKU5.8B",
|
| 254 |
-
"Deepnoid/deep-solar-v2.0.7": "https://huggingface.co/Deepnoid/deep-solar-v2.0.7",
|
| 255 |
-
"01-ai/Yi-1.5-9B": "https://huggingface.co/01-ai/Yi-1.5-9B",
|
| 256 |
-
"PracticeLLM/Custom-KoLLM-13B-v4": "https://huggingface.co/PracticeLLM/Custom-KoLLM-13B-v4",
|
| 257 |
-
"nuebaek/komt_mistral_mss_user_0_max_steps_80": "https://huggingface.co/nuebaek/komt_mistral_mss_user_0_max_steps_80",
|
| 258 |
-
"dltjdgh0928/lsh_finetune_v0.11": "https://huggingface.co/dltjdgh0928/lsh_finetune_v0.11",
|
| 259 |
-
"shleeeee/mistral-7b-wiki": "https://huggingface.co/shleeeee/mistral-7b-wiki",
|
| 260 |
-
"nayohan/polyglot-ko-5.8b-Inst": "https://huggingface.co/nayohan/polyglot-ko-5.8b-Inst",
|
| 261 |
-
"ifuseok/sft-solar-10.7b-v1.1": "https://huggingface.co/ifuseok/sft-solar-10.7b-v1.1",
|
| 262 |
-
"Junmai/KIT-5.8b": "https://huggingface.co/Junmai/KIT-5.8b",
|
| 263 |
-
"heegyu/polyglot-ko-3.8b-chat": "https://huggingface.co/heegyu/polyglot-ko-3.8b-chat",
|
| 264 |
-
"etri-xainlp/polyglot-ko-12.8b-instruct": "https://huggingface.co/etri-xainlp/polyglot-ko-12.8b-instruct",
|
| 265 |
-
"OpenBuddy/openbuddy-mistral2-7b-v20.3-32k": "https://huggingface.co/OpenBuddy/openbuddy-mistral2-7b-v20.3-32k",
|
| 266 |
-
"sh2orc/Llama-3-Korean-8B": "https://huggingface.co/sh2orc/Llama-3-Korean-8B",
|
| 267 |
-
"Deepnoid/deep-solar-eeve-v2.0.0": "https://huggingface.co/Deepnoid/deep-solar-eeve-v2.0.0",
|
| 268 |
-
"Herry443/Mistral-7B-KNUT-ref": "https://huggingface.co/Herry443/Mistral-7B-KNUT-ref",
|
| 269 |
-
"heegyu/polyglot-ko-5.8b-chat": "https://huggingface.co/heegyu/polyglot-ko-5.8b-chat",
|
| 270 |
-
"jungyuko/DAVinCI-42dot_LLM-PLM-1.3B-v1.5.3": "https://huggingface.co/jungyuko/DAVinCI-42dot_LLM-PLM-1.3B-v1.5.3",
|
| 271 |
-
"DILAB-HYU/KoQuality-Polyglot-5.8b": "https://huggingface.co/DILAB-HYU/KoQuality-Polyglot-5.8b",
|
| 272 |
-
"Byungchae/k2s3_test_0000": "https://huggingface.co/Byungchae/k2s3_test_0000",
|
| 273 |
-
"migtissera/Tess-v2.5-Phi-3-medium-128k-14B": "https://huggingface.co/migtissera/Tess-v2.5-Phi-3-medium-128k-14B",
|
| 274 |
-
"kyujinpy/Korean-OpenOrca-13B": "https://huggingface.co/kyujinpy/Korean-OpenOrca-13B",
|
| 275 |
-
"kyujinpy/KO-Platypus2-13B": "https://huggingface.co/kyujinpy/KO-Platypus2-13B",
|
| 276 |
-
"jin05102518/Astral-7B-Instruct-v0.01": "https://huggingface.co/jin05102518/Astral-7B-Instruct-v0.01",
|
| 277 |
-
"Byungchae/k2s3_test_0002": "https://huggingface.co/Byungchae/k2s3_test_0002",
|
| 278 |
-
"NousResearch/Nous-Hermes-llama-2-7b": "https://huggingface.co/NousResearch/Nous-Hermes-llama-2-7b",
|
| 279 |
-
"kaist-ai/prometheus-13b-v1.0": "https://huggingface.co/kaist-ai/prometheus-13b-v1.0",
|
| 280 |
-
"sel303/llama3-diverce-ver1.0": "https://huggingface.co/sel303/llama3-diverce-ver1.0",
|
| 281 |
-
"NousResearch/Nous-Capybara-7B": "https://huggingface.co/NousResearch/Nous-Capybara-7B",
|
| 282 |
-
"rrw-x2/KoSOLAR-10.7B-DPO-v1.0": "https://huggingface.co/rrw-x2/KoSOLAR-10.7B-DPO-v1.0",
|
| 283 |
-
"Edentns/DataVortexS-10.7B-v0.2": "https://huggingface.co/Edentns/DataVortexS-10.7B-v0.2",
|
| 284 |
-
"Jsoo/Llama3-beomi-Open-Ko-8B-Instruct-preview-test6": "https://huggingface.co/Jsoo/Llama3-beomi-Open-Ko-8B-Instruct-preview-test6",
|
| 285 |
-
"tlphams/gollm-instruct-all-in-one-v1": "https://huggingface.co/tlphams/gollm-instruct-all-in-one-v1",
|
| 286 |
-
"Edentns/DataVortexTL-1.1B-v0.1": "https://huggingface.co/Edentns/DataVortexTL-1.1B-v0.1",
|
| 287 |
-
"richard-park/llama3-pre1-ds": "https://huggingface.co/richard-park/llama3-pre1-ds",
|
| 288 |
-
"ehartford/samantha-1.1-llama-33b": "https://huggingface.co/ehartford/samantha-1.1-llama-33b",
|
| 289 |
-
"heegyu/LIMA-13b-hf": "https://huggingface.co/heegyu/LIMA-13b-hf",
|
| 290 |
-
"heegyu/42dot_LLM-PLM-1.3B-mt": "https://huggingface.co/heegyu/42dot_LLM-PLM-1.3B-mt",
|
| 291 |
-
"shleeeee/mistral-ko-7b-wiki-neft": "https://huggingface.co/shleeeee/mistral-ko-7b-wiki-neft",
|
| 292 |
-
"EleutherAI/polyglot-ko-1.3b": "https://huggingface.co/EleutherAI/polyglot-ko-1.3b",
|
| 293 |
-
"kyujinpy/Ko-PlatYi-6B-gu": "https://huggingface.co/kyujinpy/Ko-PlatYi-6B-gu",
|
| 294 |
-
"sel303/llama3-diverce-ver1.6": "https://huggingface.co/sel303/llama3-diverce-ver1.6"
|
| 295 |
-
}
|
| 296 |
-
|
| 297 |
-
def get_korea_models():
|
| 298 |
-
"""Korea 관련 모델 검색"""
|
| 299 |
-
params = {
|
| 300 |
-
"search": "korea",
|
| 301 |
-
"full": "True",
|
| 302 |
-
"config": "True",
|
| 303 |
-
"limit": 1000
|
| 304 |
-
}
|
| 305 |
-
|
| 306 |
-
try:
|
| 307 |
-
response = requests.get(
|
| 308 |
-
"https://huggingface.co/api/models",
|
| 309 |
-
headers={'Accept': 'application/json'},
|
| 310 |
-
params=params
|
| 311 |
-
)
|
| 312 |
-
|
| 313 |
-
if response.status_code == 200:
|
| 314 |
-
return response.json()
|
| 315 |
-
else:
|
| 316 |
-
print(f"Failed to fetch Korea models: {response.status_code}")
|
| 317 |
-
return []
|
| 318 |
-
except Exception as e:
|
| 319 |
-
print(f"Error fetching Korea models: {str(e)}")
|
| 320 |
-
return []
|
| 321 |
-
|
| 322 |
-
def get_all_models(limit=1000):
|
| 323 |
-
"""모든 모델과 Korea 관련 모델 가져오기"""
|
| 324 |
-
all_models = []
|
| 325 |
-
existing_ids = set()
|
| 326 |
-
|
| 327 |
-
# 1. Korea 검색 결과 가져오기
|
| 328 |
-
korea_params = {
|
| 329 |
-
"search": "korea",
|
| 330 |
-
"full": "True",
|
| 331 |
-
"config": "True",
|
| 332 |
-
"limit": limit
|
| 333 |
-
}
|
| 334 |
-
|
| 335 |
-
korea_response = requests.get(
|
| 336 |
-
"https://huggingface.co/api/models",
|
| 337 |
-
headers={'Accept': 'application/json'},
|
| 338 |
-
params=korea_params
|
| 339 |
-
)
|
| 340 |
-
|
| 341 |
-
if korea_response.status_code == 200:
|
| 342 |
-
korea_models = korea_response.json()
|
| 343 |
-
print(f"Found {len(korea_models)} Korea-related models")
|
| 344 |
-
for model in korea_models:
|
| 345 |
-
model_id = model.get('id', '')
|
| 346 |
-
if model_id not in existing_ids:
|
| 347 |
-
all_models.append(model)
|
| 348 |
-
existing_ids.add(model_id)
|
| 349 |
-
|
| 350 |
-
# 2. Korean 검색 결과 가져오기
|
| 351 |
-
korean_params = {
|
| 352 |
-
"search": "korean",
|
| 353 |
-
"full": "True",
|
| 354 |
-
"config": "True",
|
| 355 |
-
"limit": limit
|
| 356 |
-
}
|
| 357 |
-
|
| 358 |
-
korean_response = requests.get(
|
| 359 |
-
"https://huggingface.co/api/models",
|
| 360 |
-
headers={'Accept': 'application/json'},
|
| 361 |
-
params=korean_params
|
| 362 |
-
)
|
| 363 |
-
|
| 364 |
-
if korean_response.status_code == 200:
|
| 365 |
-
korean_models = korean_response.json()
|
| 366 |
-
print(f"Found {len(korean_models)} Korean-related models")
|
| 367 |
-
for model in korean_models:
|
| 368 |
-
model_id = model.get('id', '')
|
| 369 |
-
if model_id not in existing_ids:
|
| 370 |
-
all_models.append(model)
|
| 371 |
-
existing_ids.add(model_id)
|
| 372 |
-
|
| 373 |
-
# 3. 일반 모델 리스트 가져오기
|
| 374 |
-
params = {
|
| 375 |
-
"limit": limit,
|
| 376 |
-
"full": "True",
|
| 377 |
-
"config": "True"
|
| 378 |
-
}
|
| 379 |
-
|
| 380 |
-
response = requests.get(
|
| 381 |
-
"https://huggingface.co/api/models",
|
| 382 |
-
headers={'Accept': 'application/json'},
|
| 383 |
-
params=params
|
| 384 |
-
)
|
| 385 |
-
|
| 386 |
-
if response.status_code == 200:
|
| 387 |
-
general_models = response.json()
|
| 388 |
-
for model in general_models:
|
| 389 |
-
model_id = model.get('id', '')
|
| 390 |
-
if model_id not in existing_ids:
|
| 391 |
-
all_models.append(model)
|
| 392 |
-
existing_ids.add(model_id)
|
| 393 |
-
|
| 394 |
-
print(f"Total unique models: {len(all_models)}")
|
| 395 |
-
return all_models[:limit]
|
| 396 |
-
|
| 397 |
-
def get_models_data(progress=gr.Progress()):
|
| 398 |
-
"""모델 데이터 가져오기"""
|
| 399 |
-
try:
|
| 400 |
-
progress(0, desc="Fetching models...")
|
| 401 |
-
|
| 402 |
-
# 모델 가져오기
|
| 403 |
-
all_global_models = get_all_models(limit=1000)
|
| 404 |
-
print(f"Actually fetched models count: {len(all_global_models)}")
|
| 405 |
-
|
| 406 |
-
# API 응답 순서를 순위로 사용하여 순위 맵 생성
|
| 407 |
-
rank_map = {}
|
| 408 |
-
for rank, model in enumerate(all_global_models, 1):
|
| 409 |
-
model_id = model.get('id', '').strip()
|
| 410 |
-
rank_map[model_id] = {
|
| 411 |
-
'rank': rank,
|
| 412 |
-
'likes': model.get('likes', 0),
|
| 413 |
-
'downloads': model.get('downloads', 0),
|
| 414 |
-
'title': model.get('title', 'No Title')
|
| 415 |
-
}
|
| 416 |
-
print(f"Rank {rank}: {model_id}")
|
| 417 |
-
|
| 418 |
-
# target_models의 순위 확인 및 정보 수집
|
| 419 |
-
filtered_models = []
|
| 420 |
-
for model_id in target_models.keys():
|
| 421 |
-
try:
|
| 422 |
-
# 개별 모델 API 호출
|
| 423 |
-
normalized_id = model_id.strip('/')
|
| 424 |
-
model_url_api = f"https://huggingface.co/api/models/{normalized_id}"
|
| 425 |
-
response = requests.get(
|
| 426 |
-
model_url_api,
|
| 427 |
-
headers={'Accept': 'application/json'}
|
| 428 |
-
)
|
| 429 |
-
|
| 430 |
-
if response.status_code == 200:
|
| 431 |
-
model_data = response.json()
|
| 432 |
-
api_id = model_data.get('id', '').strip()
|
| 433 |
-
|
| 434 |
-
# API 응답 순서에서 순위 찾기
|
| 435 |
-
rank_info = rank_map.get(api_id)
|
| 436 |
-
|
| 437 |
-
model_info = {
|
| 438 |
-
'id': model_id,
|
| 439 |
-
'global_rank': rank_info['rank'] if rank_info else 'Not in top 1000',
|
| 440 |
-
'downloads': model_data.get('downloads', 0),
|
| 441 |
-
'likes': model_data.get('likes', 0),
|
| 442 |
-
'title': model_data.get('title', 'No Title')
|
| 443 |
-
}
|
| 444 |
-
filtered_models.append(model_info)
|
| 445 |
-
print(f"Model {model_id}: Rank={model_info['global_rank']}, Downloads={model_info['downloads']}, Likes={model_info['likes']}")
|
| 446 |
-
else:
|
| 447 |
-
filtered_models.append({
|
| 448 |
-
'id': model_id,
|
| 449 |
-
'global_rank': 'Not in top 1000',
|
| 450 |
-
'downloads': 0,
|
| 451 |
-
'likes': 0,
|
| 452 |
-
'title': 'No Title'
|
| 453 |
-
})
|
| 454 |
-
except Exception as e:
|
| 455 |
-
print(f"Error processing {model_id}: {str(e)}")
|
| 456 |
-
filtered_models.append({
|
| 457 |
-
'id': model_id,
|
| 458 |
-
'global_rank': 'Not in top 1000',
|
| 459 |
-
'downloads': 0,
|
| 460 |
-
'likes': 0,
|
| 461 |
-
'title': 'No Title'
|
| 462 |
-
})
|
| 463 |
-
|
| 464 |
-
# 순위로 정렬
|
| 465 |
-
filtered_models.sort(key=lambda x: float('inf') if isinstance(x['global_rank'], str) else x['global_rank'])
|
| 466 |
-
|
| 467 |
-
progress(0.3, desc="Creating visualization...")
|
| 468 |
-
|
| 469 |
-
# 시각화 생성
|
| 470 |
-
fig = go.Figure()
|
| 471 |
-
|
| 472 |
-
# 순위권 내 모델만 필터링하여 시각화
|
| 473 |
-
valid_models = [m for m in filtered_models if isinstance(m['global_rank'], (int, float))]
|
| 474 |
-
|
| 475 |
-
if valid_models:
|
| 476 |
-
ids = [m['id'] for m in valid_models]
|
| 477 |
-
ranks = [m['global_rank'] for m in valid_models]
|
| 478 |
-
likes = [m['likes'] for m in valid_models]
|
| 479 |
-
downloads = [m['downloads'] for m in valid_models]
|
| 480 |
-
|
| 481 |
-
# 막대 그래프 생성 (각 순위에서 1000까지의 길이로 막대 생성)
|
| 482 |
-
fig.add_trace(go.Bar(
|
| 483 |
-
x=ids,
|
| 484 |
-
y=ranks, # 실제 순위 사용
|
| 485 |
-
base=1000, # 막대의 ��준점을 1000으로 설정
|
| 486 |
-
text=[f"Global Rank: #{r}<br>Downloads: {format(d, ',')}<br>Likes: {format(l, ',')}"
|
| 487 |
-
for r, d, l in zip(ranks, downloads, likes)],
|
| 488 |
-
textposition='auto',
|
| 489 |
-
marker_color='rgb(158,202,225)',
|
| 490 |
-
opacity=0.8
|
| 491 |
-
))
|
| 492 |
-
|
| 493 |
-
fig.update_layout(
|
| 494 |
-
title={
|
| 495 |
-
'text': 'Hugging Face Models Global Rankings',
|
| 496 |
-
'y':0.95,
|
| 497 |
-
'x':0.5,
|
| 498 |
-
'xanchor': 'center',
|
| 499 |
-
'yanchor': 'top'
|
| 500 |
-
},
|
| 501 |
-
xaxis_title='Model ID',
|
| 502 |
-
yaxis_title='Rank',
|
| 503 |
-
yaxis=dict(
|
| 504 |
-
autorange='reversed', # Y축을 반전
|
| 505 |
-
tickmode='linear',
|
| 506 |
-
tick0=0,
|
| 507 |
-
dtick=50,
|
| 508 |
-
range=[0, 1000]
|
| 509 |
-
),
|
| 510 |
-
height=800,
|
| 511 |
-
showlegend=False,
|
| 512 |
-
template='plotly_white',
|
| 513 |
-
xaxis_tickangle=-45
|
| 514 |
-
)
|
| 515 |
-
|
| 516 |
-
progress(0.6, desc="Creating model cards...")
|
| 517 |
-
|
| 518 |
-
# HTML 카드 생성
|
| 519 |
-
html_content = """
|
| 520 |
-
<div style='padding: 20px; background: #f5f5f5;'>
|
| 521 |
-
<h2 style='color: #2c3e50;'>Models Global Rankings</h2>
|
| 522 |
-
<div style='display: grid; grid-template-columns: repeat(auto-fill, minmax(300px, 1fr)); gap: 20px;'>
|
| 523 |
-
"""
|
| 524 |
-
|
| 525 |
-
for model in filtered_models:
|
| 526 |
-
rank_display = f"Global Rank #{model['global_rank']}" if isinstance(model['global_rank'], (int, float)) else "Not in top 1000"
|
| 527 |
-
|
| 528 |
-
html_content += f"""
|
| 529 |
-
<div style='
|
| 530 |
-
background: white;
|
| 531 |
-
padding: 20px;
|
| 532 |
-
border-radius: 10px;
|
| 533 |
-
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
| 534 |
-
transition: transform 0.2s;
|
| 535 |
-
'>
|
| 536 |
-
<h3 style='color: #34495e;'>{rank_display}</h3>
|
| 537 |
-
<h4 style='color: #2c3e50;'>{model['id']}</h4>
|
| 538 |
-
<p style='color: #7f8c8d;'>⬇️ Downloads: {format(model['downloads'], ',')}</p>
|
| 539 |
-
<p style='color: #7f8c8d;'>👍 Likes: {format(model['likes'], ',')}</p>
|
| 540 |
-
<a href='{target_models[model['id']]}'
|
| 541 |
-
target='_blank'
|
| 542 |
-
style='
|
| 543 |
-
display: inline-block;
|
| 544 |
-
padding: 8px 16px;
|
| 545 |
-
background: #3498db;
|
| 546 |
-
color: white;
|
| 547 |
-
text-decoration: none;
|
| 548 |
-
border-radius: 5px;
|
| 549 |
-
transition: background 0.3s;
|
| 550 |
-
'>
|
| 551 |
-
Visit Model 🔗
|
| 552 |
-
</a>
|
| 553 |
-
</div>
|
| 554 |
-
"""
|
| 555 |
-
|
| 556 |
-
html_content += "</div></div>"
|
| 557 |
-
|
| 558 |
-
# 데이터프레임 생성
|
| 559 |
-
df = pd.DataFrame([{
|
| 560 |
-
'Global Rank': f"#{m['global_rank']}" if isinstance(m['global_rank'], (int, float)) else m['global_rank'],
|
| 561 |
-
'Model ID': m['id'],
|
| 562 |
-
'Title': m['title'],
|
| 563 |
-
'Downloads': format(m['downloads'], ','),
|
| 564 |
-
'Likes': format(m['likes'], ','),
|
| 565 |
-
'URL': target_models[m['id']]
|
| 566 |
-
} for m in filtered_models])
|
| 567 |
-
|
| 568 |
-
progress(1.0, desc="Complete!")
|
| 569 |
-
return fig, html_content, df
|
| 570 |
-
|
| 571 |
-
except Exception as e:
|
| 572 |
-
print(f"Error in get_models_data: {str(e)}")
|
| 573 |
-
return create_error_plot(), f"<div>에러 발생: {str(e)}</div>", pd.DataFrame()
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
# 관심 스페이스 URL 리스트와 정보
|
| 577 |
-
target_spaces = {
|
| 578 |
-
|
| 579 |
-
"openfree/Korean-Leaderboard": "https://huggingface.co/spaces/openfree/Korean-Leaderboard",
|
| 580 |
-
"ginipick/FLUXllama": "https://huggingface.co/spaces/ginipick/FLUXllama",
|
| 581 |
-
"ginipick/SORA-3D": "https://huggingface.co/spaces/ginipick/SORA-3D",
|
| 582 |
-
"fantaxy/Sound-AI-SFX": "https://huggingface.co/spaces/fantaxy/Sound-AI-SFX",
|
| 583 |
-
"fantos/flx8lora": "https://huggingface.co/spaces/fantos/flx8lora",
|
| 584 |
-
"ginigen/Canvas": "https://huggingface.co/spaces/ginigen/Canvas",
|
| 585 |
-
"fantaxy/erotica": "https://huggingface.co/spaces/fantaxy/erotica",
|
| 586 |
-
"ginipick/time-machine": "https://huggingface.co/spaces/ginipick/time-machine",
|
| 587 |
-
"aiqcamp/FLUX-VisionReply": "https://huggingface.co/spaces/aiqcamp/FLUX-VisionReply",
|
| 588 |
-
"openfree/Tetris-Game": "https://huggingface.co/spaces/openfree/Tetris-Game",
|
| 589 |
-
"openfree/everychat": "https://huggingface.co/spaces/openfree/everychat",
|
| 590 |
-
"VIDraft/mouse1": "https://huggingface.co/spaces/VIDraft/mouse1",
|
| 591 |
-
"kolaslab/alpha-go": "https://huggingface.co/spaces/kolaslab/alpha-go",
|
| 592 |
-
"ginipick/text3d": "https://huggingface.co/spaces/ginipick/text3d",
|
| 593 |
-
"openfree/trending-board": "https://huggingface.co/spaces/openfree/trending-board",
|
| 594 |
-
"cutechicken/tankwar": "https://huggingface.co/spaces/cutechicken/tankwar",
|
| 595 |
-
"openfree/game-jewel": "https://huggingface.co/spaces/openfree/game-jewel",
|
| 596 |
-
"VIDraft/mouse-chat": "https://huggingface.co/spaces/VIDraft/mouse-chat",
|
| 597 |
-
"ginipick/AccDiffusion": "https://huggingface.co/spaces/ginipick/AccDiffusion",
|
| 598 |
-
"aiqtech/Particle-Accelerator-Simulation": "https://huggingface.co/spaces/aiqtech/Particle-Accelerator-Simulation",
|
| 599 |
-
"openfree/GiniGEN": "https://huggingface.co/spaces/openfree/GiniGEN",
|
| 600 |
-
"kolaslab/3DAudio-Spectrum-Analyzer": "https://huggingface.co/spaces/kolaslab/3DAudio-Spectrum-Analyzer",
|
| 601 |
-
"openfree/trending-news-24": "https://huggingface.co/spaces/openfree/trending-news-24",
|
| 602 |
-
"ginipick/Realtime-FLUX": "https://huggingface.co/spaces/ginipick/Realtime-FLUX",
|
| 603 |
-
"VIDraft/prime-number": "https://huggingface.co/spaces/VIDraft/prime-number",
|
| 604 |
-
"kolaslab/zombie-game": "https://huggingface.co/spaces/kolaslab/zombie-game",
|
| 605 |
-
"fantos/miro-game": "https://huggingface.co/spaces/fantos/miro-game",
|
| 606 |
-
"kolaslab/shooting": "https://huggingface.co/spaces/kolaslab/shooting",
|
| 607 |
-
"VIDraft/Mouse-Hackathon": "https://huggingface.co/spaces/VIDraft/Mouse-Hackathon",
|
| 608 |
-
"upstage/open-ko-llm-leaderboard": "https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard",
|
| 609 |
-
"LGAI-EXAONE/EXAONE-3.5-Instruct-Demo": "https://huggingface.co/spaces/LGAI-EXAONE/EXAONE-3.5-Instruct-Demo",
|
| 610 |
-
|
| 611 |
-
"cutechicken/TankWar3D": "https://huggingface.co/spaces/cutechicken/TankWar3D",
|
| 612 |
-
"kolaslab/RC4-EnDecoder": "https://huggingface.co/spaces/kolaslab/RC4-EnDecoder",
|
| 613 |
-
"kolaslab/simulator": "https://huggingface.co/spaces/kolaslab/simulator",
|
| 614 |
-
"kolaslab/calculator": "https://huggingface.co/spaces/kolaslab/calculator",
|
| 615 |
-
"etri-vilab/Ko-LLaVA": "https://huggingface.co/spaces/etri-vilab/Ko-LLaVA",
|
| 616 |
-
"etri-vilab/KOALA": "https://huggingface.co/spaces/etri-vilab/KOALA",
|
| 617 |
-
"naver-clova-ix/donut-base-finetuned-cord-v2": "https://huggingface.co/spaces/naver-clova-ix/donut-base-finetuned-cord-v2",
|
| 618 |
-
|
| 619 |
-
"NCSOFT/VARCO_Arena": "https://huggingface.co/spaces/NCSOFT/VARCO_Arena"
|
| 620 |
-
}
|
| 621 |
-
|
| 622 |
-
def get_spaces_data(sort_type="trending", progress=gr.Progress()):
|
| 623 |
-
"""스페이스 데이터 가져오기 (trending 또는 modes)"""
|
| 624 |
-
url = "https://huggingface.co/api/spaces"
|
| 625 |
-
params = {
|
| 626 |
-
'full': 'true',
|
| 627 |
-
'limit': 400
|
| 628 |
-
}
|
| 629 |
-
|
| 630 |
-
if sort_type == "modes":
|
| 631 |
-
params['sort'] = 'likes'
|
| 632 |
-
|
| 633 |
-
try:
|
| 634 |
-
progress(0, desc=f"Fetching {sort_type} spaces data...")
|
| 635 |
-
response = requests.get(url, params=params)
|
| 636 |
-
response.raise_for_status()
|
| 637 |
-
all_spaces = response.json()
|
| 638 |
-
|
| 639 |
-
# 순위 정보 저장
|
| 640 |
-
space_ranks = {}
|
| 641 |
-
for idx, space in enumerate(all_spaces, 1):
|
| 642 |
-
space_id = space.get('id', '')
|
| 643 |
-
if space_id in target_spaces:
|
| 644 |
-
space['rank'] = idx
|
| 645 |
-
space_ranks[space_id] = space
|
| 646 |
-
|
| 647 |
-
spaces = [space_ranks[space_id] for space_id in space_ranks.keys()]
|
| 648 |
-
spaces.sort(key=lambda x: x['rank'])
|
| 649 |
-
|
| 650 |
-
progress(0.3, desc="Creating visualization...")
|
| 651 |
-
|
| 652 |
-
# 시각화 생성
|
| 653 |
-
fig = go.Figure()
|
| 654 |
-
|
| 655 |
-
# 데이터 준비
|
| 656 |
-
ids = [space['id'] for space in spaces]
|
| 657 |
-
ranks = [space['rank'] for space in spaces]
|
| 658 |
-
likes = [space.get('likes', 0) for space in spaces]
|
| 659 |
-
titles = [space.get('cardData', {}).get('title') or space.get('title', 'No Title') for space in spaces]
|
| 660 |
-
|
| 661 |
-
# 막대 그래프 생성 (각 순위에서 400까지의 길이로 막대 생성)
|
| 662 |
-
fig.add_trace(go.Bar(
|
| 663 |
-
x=ids,
|
| 664 |
-
y=ranks, # 실제 순위 사용
|
| 665 |
-
base=400, # 막대의 기준점을 400으로 설정
|
| 666 |
-
text=[f"Rank: {r}<br>Title: {t}<br>Likes: {l}"
|
| 667 |
-
for r, t, l in zip(ranks, titles, likes)],
|
| 668 |
-
textposition='auto',
|
| 669 |
-
marker_color='rgb(158,202,225)',
|
| 670 |
-
opacity=0.8
|
| 671 |
-
))
|
| 672 |
-
|
| 673 |
-
fig.update_layout(
|
| 674 |
-
title={
|
| 675 |
-
'text': f'Hugging Face Spaces {sort_type.title()} Rankings (Top 400)',
|
| 676 |
-
'y':0.95,
|
| 677 |
-
'x':0.5,
|
| 678 |
-
'xanchor': 'center',
|
| 679 |
-
'yanchor': 'top'
|
| 680 |
-
},
|
| 681 |
-
xaxis_title='Space ID',
|
| 682 |
-
yaxis_title='Rank',
|
| 683 |
-
yaxis=dict(
|
| 684 |
-
autorange='reversed', # Y축을 반전 (1이 위로, 400이 아래로)
|
| 685 |
-
tickmode='linear',
|
| 686 |
-
tick0=1, # 시작값을 1로 설정
|
| 687 |
-
dtick=20,
|
| 688 |
-
range=[1, 400], # Y축 범위를 1부터 400까지로 설정
|
| 689 |
-
ticktext=[str(i) for i in range(1, 401, 20)], # 1부터 시작하는 눈금 레이블
|
| 690 |
-
tickvals=[i for i in range(1, 401, 20)] # 눈금 위치
|
| 691 |
-
),
|
| 692 |
-
height=800,
|
| 693 |
-
showlegend=False,
|
| 694 |
-
template='plotly_white',
|
| 695 |
-
xaxis_tickangle=-45
|
| 696 |
-
)
|
| 697 |
-
|
| 698 |
-
progress(0.6, desc="Creating space cards...")
|
| 699 |
-
|
| 700 |
-
# HTML 카드 생성
|
| 701 |
-
html_content = f"""
|
| 702 |
-
<div style='padding: 20px; background: #f5f5f5;'>
|
| 703 |
-
<h2 style='color: #2c3e50;'>{sort_type.title()} Rankings</h2>
|
| 704 |
-
<div style='display: grid; grid-template-columns: repeat(auto-fill, minmax(300px, 1fr)); gap: 20px;'>
|
| 705 |
-
"""
|
| 706 |
-
|
| 707 |
-
for space in spaces:
|
| 708 |
-
space_id = space['id']
|
| 709 |
-
rank = space['rank']
|
| 710 |
-
title = space.get('cardData', {}).get('title') or space.get('title', 'No Title')
|
| 711 |
-
likes = space.get('likes', 0)
|
| 712 |
-
|
| 713 |
-
html_content += f"""
|
| 714 |
-
<div style='
|
| 715 |
-
background: white;
|
| 716 |
-
padding: 20px;
|
| 717 |
-
border-radius: 10px;
|
| 718 |
-
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
| 719 |
-
transition: transform 0.2s;
|
| 720 |
-
'>
|
| 721 |
-
<h3 style='color: #34495e;'>Rank #{rank} - {space_id}</h3>
|
| 722 |
-
<h4 style='
|
| 723 |
-
color: #2980b9;
|
| 724 |
-
margin: 10px 0;
|
| 725 |
-
font-size: 1.2em;
|
| 726 |
-
font-weight: bold;
|
| 727 |
-
text-shadow: 1px 1px 2px rgba(0,0,0,0.1);
|
| 728 |
-
background: linear-gradient(to right, #3498db, #2980b9);
|
| 729 |
-
-webkit-background-clip: text;
|
| 730 |
-
-webkit-text-fill-color: transparent;
|
| 731 |
-
padding: 5px 0;
|
| 732 |
-
'>{title}</h4>
|
| 733 |
-
<p style='color: #7f8c8d; margin-bottom: 10px;'>👍 Likes: {likes}</p>
|
| 734 |
-
<a href='{target_spaces[space_id]}'
|
| 735 |
-
target='_blank'
|
| 736 |
-
style='
|
| 737 |
-
display: inline-block;
|
| 738 |
-
padding: 8px 16px;
|
| 739 |
-
background: #3498db;
|
| 740 |
-
color: white;
|
| 741 |
-
text-decoration: none;
|
| 742 |
-
border-radius: 5px;
|
| 743 |
-
transition: background 0.3s;
|
| 744 |
-
'>
|
| 745 |
-
Visit Space 🔗
|
| 746 |
-
</a>
|
| 747 |
-
</div>
|
| 748 |
-
"""
|
| 749 |
-
|
| 750 |
-
html_content += "</div></div>"
|
| 751 |
-
|
| 752 |
-
# 데이터프레임 생성
|
| 753 |
-
df = pd.DataFrame([{
|
| 754 |
-
'Rank': space['rank'],
|
| 755 |
-
'Space ID': space['id'],
|
| 756 |
-
'Title': space.get('cardData', {}).get('title') or space.get('title', 'No Title'),
|
| 757 |
-
'Likes': space.get('likes', 0),
|
| 758 |
-
'URL': target_spaces[space['id']]
|
| 759 |
-
} for space in spaces])
|
| 760 |
-
|
| 761 |
-
progress(1.0, desc="Complete!")
|
| 762 |
-
return fig, html_content, df
|
| 763 |
-
|
| 764 |
-
except Exception as e:
|
| 765 |
-
print(f"Error in get_spaces_data: {str(e)}")
|
| 766 |
-
error_html = f'<div style="color: red; padding: 20px;">Error: {str(e)}</div>'
|
| 767 |
-
error_plot = create_error_plot()
|
| 768 |
-
return error_plot, error_html, pd.DataFrame()
|
| 769 |
-
|
| 770 |
-
|
| 771 |
-
def create_trend_visualization(spaces_data):
|
| 772 |
-
if not spaces_data:
|
| 773 |
-
return create_error_plot()
|
| 774 |
-
|
| 775 |
-
fig = go.Figure()
|
| 776 |
-
|
| 777 |
-
# 순위 데이터 준비
|
| 778 |
-
ranks = []
|
| 779 |
-
for idx, space in enumerate(spaces_data, 1):
|
| 780 |
-
space_id = space.get('id', '')
|
| 781 |
-
if space_id in target_spaces:
|
| 782 |
-
ranks.append({
|
| 783 |
-
'id': space_id,
|
| 784 |
-
'rank': idx,
|
| 785 |
-
'likes': space.get('likes', 0),
|
| 786 |
-
'title': space.get('title', 'N/A'),
|
| 787 |
-
'views': space.get('views', 0)
|
| 788 |
-
})
|
| 789 |
-
|
| 790 |
-
if not ranks:
|
| 791 |
-
return create_error_plot()
|
| 792 |
-
|
| 793 |
-
# 순위별로 정렬
|
| 794 |
-
ranks.sort(key=lambda x: x['rank'])
|
| 795 |
-
|
| 796 |
-
# 플롯 데이터 생성
|
| 797 |
-
ids = [r['id'] for r in ranks]
|
| 798 |
-
rank_values = [r['rank'] for r in ranks]
|
| 799 |
-
likes = [r['likes'] for r in ranks]
|
| 800 |
-
views = [r['views'] for r in ranks]
|
| 801 |
-
|
| 802 |
-
# 막대 그래프 생성
|
| 803 |
-
fig.add_trace(go.Bar(
|
| 804 |
-
x=ids,
|
| 805 |
-
y=rank_values,
|
| 806 |
-
text=[f"Rank: {r}<br>Likes: {l}<br>Views: {v}" for r, l, v in zip(rank_values, likes, views)],
|
| 807 |
-
textposition='auto',
|
| 808 |
-
marker_color='rgb(158,202,225)',
|
| 809 |
-
opacity=0.8
|
| 810 |
-
))
|
| 811 |
-
|
| 812 |
-
fig.update_layout(
|
| 813 |
-
title={
|
| 814 |
-
'text': 'Current Trending Ranks (All Target Spaces)',
|
| 815 |
-
'y':0.95,
|
| 816 |
-
'x':0.5,
|
| 817 |
-
'xanchor': 'center',
|
| 818 |
-
'yanchor': 'top'
|
| 819 |
-
},
|
| 820 |
-
xaxis_title='Space ID',
|
| 821 |
-
yaxis_title='Trending Rank',
|
| 822 |
-
yaxis_autorange='reversed',
|
| 823 |
-
height=800,
|
| 824 |
-
showlegend=False,
|
| 825 |
-
template='plotly_white',
|
| 826 |
-
xaxis_tickangle=-45
|
| 827 |
-
)
|
| 828 |
-
|
| 829 |
-
return fig
|
| 830 |
-
|
| 831 |
-
# 토큰이 없는 경우를 위한 대체 함수
|
| 832 |
-
def get_trending_spaces_without_token():
|
| 833 |
-
try:
|
| 834 |
-
url = "https://huggingface.co/api/spaces"
|
| 835 |
-
params = {
|
| 836 |
-
'sort': 'likes',
|
| 837 |
-
'direction': -1,
|
| 838 |
-
'limit': 400,
|
| 839 |
-
'full': 'true'
|
| 840 |
-
}
|
| 841 |
-
|
| 842 |
-
response = requests.get(url, params=params)
|
| 843 |
-
|
| 844 |
-
if response.status_code == 200:
|
| 845 |
-
return response.json()
|
| 846 |
-
else:
|
| 847 |
-
print(f"API 요청 실패 (토큰 없음): {response.status_code}")
|
| 848 |
-
print(f"Response: {response.text}")
|
| 849 |
-
return None
|
| 850 |
-
except Exception as e:
|
| 851 |
-
print(f"API 호출 중 에러 발생 (토큰 없음): {str(e)}")
|
| 852 |
-
return None
|
| 853 |
-
|
| 854 |
-
# API 토큰 설정 및 함수 선택
|
| 855 |
-
if not HF_TOKEN:
|
| 856 |
-
get_trending_spaces = get_trending_spaces_without_token
|
| 857 |
-
|
| 858 |
-
|
| 859 |
-
|
| 860 |
-
def create_error_plot():
|
| 861 |
-
fig = go.Figure()
|
| 862 |
-
fig.add_annotation(
|
| 863 |
-
text="데이터를 불러올 수 없습니다.\n(API 인증이 필요합니다)",
|
| 864 |
-
xref="paper",
|
| 865 |
-
yref="paper",
|
| 866 |
-
x=0.5,
|
| 867 |
-
y=0.5,
|
| 868 |
-
showarrow=False,
|
| 869 |
-
font=dict(size=20)
|
| 870 |
-
)
|
| 871 |
-
fig.update_layout(
|
| 872 |
-
title="Error Loading Data",
|
| 873 |
-
height=400
|
| 874 |
-
)
|
| 875 |
-
return fig
|
| 876 |
-
|
| 877 |
-
|
| 878 |
-
def create_space_info_html(spaces_data):
|
| 879 |
-
if not spaces_data:
|
| 880 |
-
return "<div style='padding: 20px;'><h2>데이터를 불러오는데 실패했습니다.</h2></div>"
|
| 881 |
-
|
| 882 |
-
html_content = """
|
| 883 |
-
<div style='padding: 20px;'>
|
| 884 |
-
<h2 style='color: #2c3e50;'>Current Trending Rankings</h2>
|
| 885 |
-
<div style='display: grid; grid-template-columns: repeat(auto-fill, minmax(300px, 1fr)); gap: 20px;'>
|
| 886 |
-
"""
|
| 887 |
-
|
| 888 |
-
# 모든 target spaces를 포함하도록 수정
|
| 889 |
-
for space_id in target_spaces.keys():
|
| 890 |
-
space_info = next((s for s in spaces_data if s.get('id') == space_id), None)
|
| 891 |
-
if space_info:
|
| 892 |
-
rank = next((idx for idx, s in enumerate(spaces_data, 1) if s.get('id') == space_id), 'N/A')
|
| 893 |
-
html_content += f"""
|
| 894 |
-
<div style='
|
| 895 |
-
background: white;
|
| 896 |
-
padding: 20px;
|
| 897 |
-
border-radius: 10px;
|
| 898 |
-
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
| 899 |
-
transition: transform 0.2s;
|
| 900 |
-
'>
|
| 901 |
-
<h3 style='color: #34495e;'>#{rank} - {space_id}</h3>
|
| 902 |
-
<p style='color: #7f8c8d;'>👍 Likes: {space_info.get('likes', 'N/A')}</p>
|
| 903 |
-
<p style='color: #7f8c8d;'>👀 Views: {space_info.get('views', 'N/A')}</p>
|
| 904 |
-
<p style='color: #2c3e50;'>{space_info.get('title', 'N/A')}</p>
|
| 905 |
-
<p style='color: #7f8c8d; font-size: 0.9em;'>{space_info.get('description', 'N/A')[:100]}...</p>
|
| 906 |
-
<a href='{target_spaces[space_id]}'
|
| 907 |
-
target='_blank'
|
| 908 |
-
style='
|
| 909 |
-
display: inline-block;
|
| 910 |
-
padding: 8px 16px;
|
| 911 |
-
background: #3498db;
|
| 912 |
-
color: white;
|
| 913 |
-
text-decoration: none;
|
| 914 |
-
border-radius: 5px;
|
| 915 |
-
transition: background 0.3s;
|
| 916 |
-
'>
|
| 917 |
-
Visit Space 🔗
|
| 918 |
-
</a>
|
| 919 |
-
</div>
|
| 920 |
-
"""
|
| 921 |
-
else:
|
| 922 |
-
html_content += f"""
|
| 923 |
-
<div style='
|
| 924 |
-
background: #f8f9fa;
|
| 925 |
-
padding: 20px;
|
| 926 |
-
border-radius: 10px;
|
| 927 |
-
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
| 928 |
-
'>
|
| 929 |
-
<h3 style='color: #34495e;'>{space_id}</h3>
|
| 930 |
-
<p style='color: #7f8c8d;'>Not in trending</p>
|
| 931 |
-
<a href='{target_spaces[space_id]}'
|
| 932 |
-
target='_blank'
|
| 933 |
-
style='
|
| 934 |
-
display: inline-block;
|
| 935 |
-
padding: 8px 16px;
|
| 936 |
-
background: #95a5a6;
|
| 937 |
-
color: white;
|
| 938 |
-
text-decoration: none;
|
| 939 |
-
border-radius: 5px;
|
| 940 |
-
'>
|
| 941 |
-
Visit Space 🔗
|
| 942 |
-
</a>
|
| 943 |
-
</div>
|
| 944 |
-
"""
|
| 945 |
-
|
| 946 |
-
html_content += "</div></div>"
|
| 947 |
-
return html_content
|
| 948 |
-
|
| 949 |
-
def create_data_table(spaces_data):
|
| 950 |
-
if not spaces_data:
|
| 951 |
-
return pd.DataFrame()
|
| 952 |
-
|
| 953 |
-
rows = []
|
| 954 |
-
for idx, space in enumerate(spaces_data, 1):
|
| 955 |
-
space_id = space.get('id', '')
|
| 956 |
-
if space_id in target_spaces:
|
| 957 |
-
rows.append({
|
| 958 |
-
'Rank': idx,
|
| 959 |
-
'Space ID': space_id,
|
| 960 |
-
'Likes': space.get('likes', 'N/A'),
|
| 961 |
-
'Title': space.get('title', 'N/A'),
|
| 962 |
-
'URL': target_spaces[space_id]
|
| 963 |
-
})
|
| 964 |
-
|
| 965 |
-
return pd.DataFrame(rows)
|
| 966 |
-
|
| 967 |
-
def refresh_data():
|
| 968 |
-
spaces_data = get_trending_spaces()
|
| 969 |
-
if spaces_data:
|
| 970 |
-
plot = create_trend_visualization(spaces_data)
|
| 971 |
-
info = create_space_info_html(spaces_data)
|
| 972 |
-
df = create_data_table(spaces_data)
|
| 973 |
-
return plot, info, df
|
| 974 |
-
else:
|
| 975 |
-
return create_error_plot(), "<div>API 인증이 필요합니다.</div>", pd.DataFrame()
|
| 976 |
-
|
| 977 |
-
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 978 |
-
gr.Markdown("""
|
| 979 |
-
# 🤗 허깅페이스 '한국(언어) 리더보드'
|
| 980 |
-
HuggingFace가 제공하는 Spaces와 Models 실시간 인기 순위를 반영: 한국인(기업)이 공개, 한국 'LLM 리더보드' 및 TAG 등을 참고해 리스트 갱신. 신규 등록 요청: [email protected]
|
| 981 |
-
""")
|
| 982 |
-
|
| 983 |
-
# 새로 고침 버튼을 상단으로 이동하고 한글로 변경
|
| 984 |
-
refresh_btn = gr.Button("🔄 새로 고침", variant="primary")
|
| 985 |
-
|
| 986 |
-
with gr.Tab("Spaces Trending"):
|
| 987 |
-
trending_plot = gr.Plot()
|
| 988 |
-
trending_info = gr.HTML()
|
| 989 |
-
trending_df = gr.DataFrame()
|
| 990 |
-
|
| 991 |
-
with gr.Tab("Models Trending"):
|
| 992 |
-
models_plot = gr.Plot()
|
| 993 |
-
models_info = gr.HTML()
|
| 994 |
-
models_df = gr.DataFrame()
|
| 995 |
-
|
| 996 |
-
def refresh_all_data():
|
| 997 |
-
spaces_results = get_spaces_data("trending")
|
| 998 |
-
models_results = get_models_data()
|
| 999 |
-
return [*spaces_results, *models_results]
|
| 1000 |
-
|
| 1001 |
-
refresh_btn.click(
|
| 1002 |
-
refresh_all_data,
|
| 1003 |
-
outputs=[
|
| 1004 |
-
trending_plot, trending_info, trending_df,
|
| 1005 |
-
models_plot, models_info, models_df
|
| 1006 |
-
]
|
| 1007 |
-
)
|
| 1008 |
-
|
| 1009 |
-
# 초기 데이터 로드
|
| 1010 |
-
spaces_results = get_spaces_data("trending")
|
| 1011 |
-
models_results = get_models_data()
|
| 1012 |
-
|
| 1013 |
-
trending_plot.value, trending_info.value, trending_df.value = spaces_results
|
| 1014 |
-
models_plot.value, models_info.value, models_df.value = models_results
|
| 1015 |
-
|
| 1016 |
-
|
| 1017 |
-
# Gradio 앱 실행
|
| 1018 |
-
demo.launch(
|
| 1019 |
-
server_name="0.0.0.0",
|
| 1020 |
-
server_port=7860,
|
| 1021 |
-
share=False
|
| 1022 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|