Spaces:
Runtime error
Runtime error
Upload 9 files
Browse files- diffusers_helper/__init__.py +1 -0
- diffusers_helper/bucket_tools.py +30 -0
- diffusers_helper/clip_vision.py +12 -0
- diffusers_helper/dit_common.py +53 -0
- diffusers_helper/hf_login.py +25 -0
- diffusers_helper/hunyuan.py +111 -0
- diffusers_helper/memory.py +210 -0
- diffusers_helper/thread_utils.py +123 -0
- diffusers_helper/utils.py +613 -0
diffusers_helper/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
# diffusers_helper package
|
diffusers_helper/bucket_tools.py
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
bucket_options = {
|
| 2 |
+
640: [
|
| 3 |
+
(416, 960),
|
| 4 |
+
(448, 864),
|
| 5 |
+
(480, 832),
|
| 6 |
+
(512, 768),
|
| 7 |
+
(544, 704),
|
| 8 |
+
(576, 672),
|
| 9 |
+
(608, 640),
|
| 10 |
+
(640, 608),
|
| 11 |
+
(672, 576),
|
| 12 |
+
(704, 544),
|
| 13 |
+
(768, 512),
|
| 14 |
+
(832, 480),
|
| 15 |
+
(864, 448),
|
| 16 |
+
(960, 416),
|
| 17 |
+
],
|
| 18 |
+
}
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def find_nearest_bucket(h, w, resolution=640):
|
| 22 |
+
min_metric = float('inf')
|
| 23 |
+
best_bucket = None
|
| 24 |
+
for (bucket_h, bucket_w) in bucket_options[resolution]:
|
| 25 |
+
metric = abs(h * bucket_w - w * bucket_h)
|
| 26 |
+
if metric <= min_metric:
|
| 27 |
+
min_metric = metric
|
| 28 |
+
best_bucket = (bucket_h, bucket_w)
|
| 29 |
+
return best_bucket
|
| 30 |
+
|
diffusers_helper/clip_vision.py
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
def hf_clip_vision_encode(image, feature_extractor, image_encoder):
|
| 5 |
+
assert isinstance(image, np.ndarray)
|
| 6 |
+
assert image.ndim == 3 and image.shape[2] == 3
|
| 7 |
+
assert image.dtype == np.uint8
|
| 8 |
+
|
| 9 |
+
preprocessed = feature_extractor.preprocess(images=image, return_tensors="pt").to(device=image_encoder.device, dtype=image_encoder.dtype)
|
| 10 |
+
image_encoder_output = image_encoder(**preprocessed)
|
| 11 |
+
|
| 12 |
+
return image_encoder_output
|
diffusers_helper/dit_common.py
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import accelerate.accelerator
|
| 3 |
+
|
| 4 |
+
from diffusers.models.normalization import RMSNorm, LayerNorm, FP32LayerNorm, AdaLayerNormContinuous
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
accelerate.accelerator.convert_outputs_to_fp32 = lambda x: x
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def LayerNorm_forward(self, x):
|
| 11 |
+
return torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps).to(x)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
LayerNorm.forward = LayerNorm_forward
|
| 15 |
+
torch.nn.LayerNorm.forward = LayerNorm_forward
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def FP32LayerNorm_forward(self, x):
|
| 19 |
+
origin_dtype = x.dtype
|
| 20 |
+
return torch.nn.functional.layer_norm(
|
| 21 |
+
x.float(),
|
| 22 |
+
self.normalized_shape,
|
| 23 |
+
self.weight.float() if self.weight is not None else None,
|
| 24 |
+
self.bias.float() if self.bias is not None else None,
|
| 25 |
+
self.eps,
|
| 26 |
+
).to(origin_dtype)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
FP32LayerNorm.forward = FP32LayerNorm_forward
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def RMSNorm_forward(self, hidden_states):
|
| 33 |
+
input_dtype = hidden_states.dtype
|
| 34 |
+
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
| 35 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
|
| 36 |
+
|
| 37 |
+
if self.weight is None:
|
| 38 |
+
return hidden_states.to(input_dtype)
|
| 39 |
+
|
| 40 |
+
return hidden_states.to(input_dtype) * self.weight.to(input_dtype)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
RMSNorm.forward = RMSNorm_forward
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def AdaLayerNormContinuous_forward(self, x, conditioning_embedding):
|
| 47 |
+
emb = self.linear(self.silu(conditioning_embedding))
|
| 48 |
+
scale, shift = emb.chunk(2, dim=1)
|
| 49 |
+
x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :]
|
| 50 |
+
return x
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
AdaLayerNormContinuous.forward = AdaLayerNormContinuous_forward
|
diffusers_helper/hf_login.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from huggingface_hub import login
|
| 3 |
+
|
| 4 |
+
def login():
|
| 5 |
+
# 如果是在Hugging Face Space环境中运行,使用环境变量中的token
|
| 6 |
+
if os.environ.get('SPACE_ID') is not None:
|
| 7 |
+
print("Running in Hugging Face Space, using environment HF_TOKEN")
|
| 8 |
+
# Space自带访问权限,无需额外登录
|
| 9 |
+
return
|
| 10 |
+
|
| 11 |
+
# 如果本地环境有token,则使用它登录
|
| 12 |
+
hf_token = os.environ.get('HF_TOKEN')
|
| 13 |
+
if hf_token:
|
| 14 |
+
print("Logging in with HF_TOKEN from environment")
|
| 15 |
+
login(token=hf_token)
|
| 16 |
+
return
|
| 17 |
+
|
| 18 |
+
# 检查缓存的token
|
| 19 |
+
cache_file = os.path.expanduser('~/.huggingface/token')
|
| 20 |
+
if os.path.exists(cache_file):
|
| 21 |
+
print("Found cached Hugging Face token")
|
| 22 |
+
return
|
| 23 |
+
|
| 24 |
+
print("No Hugging Face token found. Using public access.")
|
| 25 |
+
# 无token时使用公共访问,速度可能较慢且有限制
|
diffusers_helper/hunyuan.py
ADDED
|
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
|
| 3 |
+
from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import DEFAULT_PROMPT_TEMPLATE
|
| 4 |
+
from diffusers_helper.utils import crop_or_pad_yield_mask
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
@torch.no_grad()
|
| 8 |
+
def encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2, max_length=256):
|
| 9 |
+
assert isinstance(prompt, str)
|
| 10 |
+
|
| 11 |
+
prompt = [prompt]
|
| 12 |
+
|
| 13 |
+
# LLAMA
|
| 14 |
+
|
| 15 |
+
prompt_llama = [DEFAULT_PROMPT_TEMPLATE["template"].format(p) for p in prompt]
|
| 16 |
+
crop_start = DEFAULT_PROMPT_TEMPLATE["crop_start"]
|
| 17 |
+
|
| 18 |
+
llama_inputs = tokenizer(
|
| 19 |
+
prompt_llama,
|
| 20 |
+
padding="max_length",
|
| 21 |
+
max_length=max_length + crop_start,
|
| 22 |
+
truncation=True,
|
| 23 |
+
return_tensors="pt",
|
| 24 |
+
return_length=False,
|
| 25 |
+
return_overflowing_tokens=False,
|
| 26 |
+
return_attention_mask=True,
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
llama_input_ids = llama_inputs.input_ids.to(text_encoder.device)
|
| 30 |
+
llama_attention_mask = llama_inputs.attention_mask.to(text_encoder.device)
|
| 31 |
+
llama_attention_length = int(llama_attention_mask.sum())
|
| 32 |
+
|
| 33 |
+
llama_outputs = text_encoder(
|
| 34 |
+
input_ids=llama_input_ids,
|
| 35 |
+
attention_mask=llama_attention_mask,
|
| 36 |
+
output_hidden_states=True,
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
llama_vec = llama_outputs.hidden_states[-3][:, crop_start:llama_attention_length]
|
| 40 |
+
# llama_vec_remaining = llama_outputs.hidden_states[-3][:, llama_attention_length:]
|
| 41 |
+
llama_attention_mask = llama_attention_mask[:, crop_start:llama_attention_length]
|
| 42 |
+
|
| 43 |
+
assert torch.all(llama_attention_mask.bool())
|
| 44 |
+
|
| 45 |
+
# CLIP
|
| 46 |
+
|
| 47 |
+
clip_l_input_ids = tokenizer_2(
|
| 48 |
+
prompt,
|
| 49 |
+
padding="max_length",
|
| 50 |
+
max_length=77,
|
| 51 |
+
truncation=True,
|
| 52 |
+
return_overflowing_tokens=False,
|
| 53 |
+
return_length=False,
|
| 54 |
+
return_tensors="pt",
|
| 55 |
+
).input_ids
|
| 56 |
+
clip_l_pooler = text_encoder_2(clip_l_input_ids.to(text_encoder_2.device), output_hidden_states=False).pooler_output
|
| 57 |
+
|
| 58 |
+
return llama_vec, clip_l_pooler
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
@torch.no_grad()
|
| 62 |
+
def vae_decode_fake(latents):
|
| 63 |
+
latent_rgb_factors = [
|
| 64 |
+
[-0.0395, -0.0331, 0.0445],
|
| 65 |
+
[0.0696, 0.0795, 0.0518],
|
| 66 |
+
[0.0135, -0.0945, -0.0282],
|
| 67 |
+
[0.0108, -0.0250, -0.0765],
|
| 68 |
+
[-0.0209, 0.0032, 0.0224],
|
| 69 |
+
[-0.0804, -0.0254, -0.0639],
|
| 70 |
+
[-0.0991, 0.0271, -0.0669],
|
| 71 |
+
[-0.0646, -0.0422, -0.0400],
|
| 72 |
+
[-0.0696, -0.0595, -0.0894],
|
| 73 |
+
[-0.0799, -0.0208, -0.0375],
|
| 74 |
+
[0.1166, 0.1627, 0.0962],
|
| 75 |
+
[0.1165, 0.0432, 0.0407],
|
| 76 |
+
[-0.2315, -0.1920, -0.1355],
|
| 77 |
+
[-0.0270, 0.0401, -0.0821],
|
| 78 |
+
[-0.0616, -0.0997, -0.0727],
|
| 79 |
+
[0.0249, -0.0469, -0.1703]
|
| 80 |
+
] # From comfyui
|
| 81 |
+
|
| 82 |
+
latent_rgb_factors_bias = [0.0259, -0.0192, -0.0761]
|
| 83 |
+
|
| 84 |
+
weight = torch.tensor(latent_rgb_factors, device=latents.device, dtype=latents.dtype).transpose(0, 1)[:, :, None, None, None]
|
| 85 |
+
bias = torch.tensor(latent_rgb_factors_bias, device=latents.device, dtype=latents.dtype)
|
| 86 |
+
|
| 87 |
+
images = torch.nn.functional.conv3d(latents, weight, bias=bias, stride=1, padding=0, dilation=1, groups=1)
|
| 88 |
+
images = images.clamp(0.0, 1.0)
|
| 89 |
+
|
| 90 |
+
return images
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
@torch.no_grad()
|
| 94 |
+
def vae_decode(latents, vae, image_mode=False):
|
| 95 |
+
latents = latents / vae.config.scaling_factor
|
| 96 |
+
|
| 97 |
+
if not image_mode:
|
| 98 |
+
image = vae.decode(latents.to(device=vae.device, dtype=vae.dtype)).sample
|
| 99 |
+
else:
|
| 100 |
+
latents = latents.to(device=vae.device, dtype=vae.dtype).unbind(2)
|
| 101 |
+
image = [vae.decode(l.unsqueeze(2)).sample for l in latents]
|
| 102 |
+
image = torch.cat(image, dim=2)
|
| 103 |
+
|
| 104 |
+
return image
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
@torch.no_grad()
|
| 108 |
+
def vae_encode(image, vae):
|
| 109 |
+
latents = vae.encode(image.to(device=vae.device, dtype=vae.dtype)).latent_dist.sample()
|
| 110 |
+
latents = latents * vae.config.scaling_factor
|
| 111 |
+
return latents
|
diffusers_helper/memory.py
ADDED
|
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# By lllyasviel
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import os
|
| 6 |
+
|
| 7 |
+
# 检查是否在Hugging Face Space环境中
|
| 8 |
+
IN_HF_SPACE = os.environ.get('SPACE_ID') is not None
|
| 9 |
+
|
| 10 |
+
# 设置CPU设备
|
| 11 |
+
cpu = torch.device('cpu')
|
| 12 |
+
|
| 13 |
+
# 在Stateless GPU环境中,不要在主进程初始化CUDA
|
| 14 |
+
def get_gpu_device():
|
| 15 |
+
if IN_HF_SPACE:
|
| 16 |
+
# 在Spaces中将延迟初始化GPU设备
|
| 17 |
+
return 'cuda' # 返回字符串,而不是实际初始化设备
|
| 18 |
+
|
| 19 |
+
# 非Spaces环境正常初始化
|
| 20 |
+
try:
|
| 21 |
+
if torch.cuda.is_available():
|
| 22 |
+
return torch.device(f'cuda:{torch.cuda.current_device()}')
|
| 23 |
+
else:
|
| 24 |
+
print("CUDA不可用,使用CPU作为默认设备")
|
| 25 |
+
return torch.device('cpu')
|
| 26 |
+
except Exception as e:
|
| 27 |
+
print(f"初始化CUDA设备时出错: {e}")
|
| 28 |
+
print("回退到CPU设备")
|
| 29 |
+
return torch.device('cpu')
|
| 30 |
+
|
| 31 |
+
# 保存一个字符串表示,而不是实际的设备对象
|
| 32 |
+
gpu = get_gpu_device()
|
| 33 |
+
|
| 34 |
+
gpu_complete_modules = []
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class DynamicSwapInstaller:
|
| 38 |
+
@staticmethod
|
| 39 |
+
def _install_module(module: torch.nn.Module, **kwargs):
|
| 40 |
+
original_class = module.__class__
|
| 41 |
+
module.__dict__['forge_backup_original_class'] = original_class
|
| 42 |
+
|
| 43 |
+
def hacked_get_attr(self, name: str):
|
| 44 |
+
if '_parameters' in self.__dict__:
|
| 45 |
+
_parameters = self.__dict__['_parameters']
|
| 46 |
+
if name in _parameters:
|
| 47 |
+
p = _parameters[name]
|
| 48 |
+
if p is None:
|
| 49 |
+
return None
|
| 50 |
+
if p.__class__ == torch.nn.Parameter:
|
| 51 |
+
return torch.nn.Parameter(p.to(**kwargs), requires_grad=p.requires_grad)
|
| 52 |
+
else:
|
| 53 |
+
return p.to(**kwargs)
|
| 54 |
+
if '_buffers' in self.__dict__:
|
| 55 |
+
_buffers = self.__dict__['_buffers']
|
| 56 |
+
if name in _buffers:
|
| 57 |
+
return _buffers[name].to(**kwargs)
|
| 58 |
+
return super(original_class, self).__getattr__(name)
|
| 59 |
+
|
| 60 |
+
module.__class__ = type('DynamicSwap_' + original_class.__name__, (original_class,), {
|
| 61 |
+
'__getattr__': hacked_get_attr,
|
| 62 |
+
})
|
| 63 |
+
|
| 64 |
+
return
|
| 65 |
+
|
| 66 |
+
@staticmethod
|
| 67 |
+
def _uninstall_module(module: torch.nn.Module):
|
| 68 |
+
if 'forge_backup_original_class' in module.__dict__:
|
| 69 |
+
module.__class__ = module.__dict__.pop('forge_backup_original_class')
|
| 70 |
+
return
|
| 71 |
+
|
| 72 |
+
@staticmethod
|
| 73 |
+
def install_model(model: torch.nn.Module, **kwargs):
|
| 74 |
+
for m in model.modules():
|
| 75 |
+
DynamicSwapInstaller._install_module(m, **kwargs)
|
| 76 |
+
return
|
| 77 |
+
|
| 78 |
+
@staticmethod
|
| 79 |
+
def uninstall_model(model: torch.nn.Module):
|
| 80 |
+
for m in model.modules():
|
| 81 |
+
DynamicSwapInstaller._uninstall_module(m)
|
| 82 |
+
return
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def fake_diffusers_current_device(model: torch.nn.Module, target_device):
|
| 86 |
+
# 转换字符串设备为torch.device
|
| 87 |
+
if isinstance(target_device, str):
|
| 88 |
+
target_device = torch.device(target_device)
|
| 89 |
+
|
| 90 |
+
if hasattr(model, 'scale_shift_table'):
|
| 91 |
+
model.scale_shift_table.data = model.scale_shift_table.data.to(target_device)
|
| 92 |
+
return
|
| 93 |
+
|
| 94 |
+
for k, p in model.named_modules():
|
| 95 |
+
if hasattr(p, 'weight'):
|
| 96 |
+
p.to(target_device)
|
| 97 |
+
return
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def get_cuda_free_memory_gb(device=None):
|
| 101 |
+
if device is None:
|
| 102 |
+
device = gpu
|
| 103 |
+
|
| 104 |
+
# 如果是字符串,转换为设备
|
| 105 |
+
if isinstance(device, str):
|
| 106 |
+
device = torch.device(device)
|
| 107 |
+
|
| 108 |
+
# 如果不是CUDA设备,返回默认值
|
| 109 |
+
if device.type != 'cuda':
|
| 110 |
+
print("无法获取非CUDA设备的内存信息,返回默认值")
|
| 111 |
+
return 6.0 # 返回一个默认值
|
| 112 |
+
|
| 113 |
+
try:
|
| 114 |
+
memory_stats = torch.cuda.memory_stats(device)
|
| 115 |
+
bytes_active = memory_stats['active_bytes.all.current']
|
| 116 |
+
bytes_reserved = memory_stats['reserved_bytes.all.current']
|
| 117 |
+
bytes_free_cuda, _ = torch.cuda.mem_get_info(device)
|
| 118 |
+
bytes_inactive_reserved = bytes_reserved - bytes_active
|
| 119 |
+
bytes_total_available = bytes_free_cuda + bytes_inactive_reserved
|
| 120 |
+
return bytes_total_available / (1024 ** 3)
|
| 121 |
+
except Exception as e:
|
| 122 |
+
print(f"获取CUDA内存信息时出错: {e}")
|
| 123 |
+
return 6.0 # 返回一个默认值
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
def move_model_to_device_with_memory_preservation(model, target_device, preserved_memory_gb=0):
|
| 127 |
+
print(f'Moving {model.__class__.__name__} to {target_device} with preserved memory: {preserved_memory_gb} GB')
|
| 128 |
+
|
| 129 |
+
# 如果是字符串,转换为设备
|
| 130 |
+
if isinstance(target_device, str):
|
| 131 |
+
target_device = torch.device(target_device)
|
| 132 |
+
|
| 133 |
+
# 如果gpu是字符串,转换为设备
|
| 134 |
+
gpu_device = gpu
|
| 135 |
+
if isinstance(gpu_device, str):
|
| 136 |
+
gpu_device = torch.device(gpu_device)
|
| 137 |
+
|
| 138 |
+
# 如果目标设备是CPU或当前在CPU上,直接移动
|
| 139 |
+
if target_device.type == 'cpu' or gpu_device.type == 'cpu':
|
| 140 |
+
model.to(device=target_device)
|
| 141 |
+
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
| 142 |
+
return
|
| 143 |
+
|
| 144 |
+
for m in model.modules():
|
| 145 |
+
if get_cuda_free_memory_gb(target_device) <= preserved_memory_gb:
|
| 146 |
+
torch.cuda.empty_cache()
|
| 147 |
+
return
|
| 148 |
+
|
| 149 |
+
if hasattr(m, 'weight'):
|
| 150 |
+
m.to(device=target_device)
|
| 151 |
+
|
| 152 |
+
model.to(device=target_device)
|
| 153 |
+
torch.cuda.empty_cache()
|
| 154 |
+
return
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
def offload_model_from_device_for_memory_preservation(model, target_device, preserved_memory_gb=0):
|
| 158 |
+
print(f'Offloading {model.__class__.__name__} from {target_device} to preserve memory: {preserved_memory_gb} GB')
|
| 159 |
+
|
| 160 |
+
# 如果是字符串,转换为设备
|
| 161 |
+
if isinstance(target_device, str):
|
| 162 |
+
target_device = torch.device(target_device)
|
| 163 |
+
|
| 164 |
+
# 如果gpu是字符串,转换为设备
|
| 165 |
+
gpu_device = gpu
|
| 166 |
+
if isinstance(gpu_device, str):
|
| 167 |
+
gpu_device = torch.device(gpu_device)
|
| 168 |
+
|
| 169 |
+
# 如果目标设备是CPU或当前在CPU上,直接处理
|
| 170 |
+
if target_device.type == 'cpu' or gpu_device.type == 'cpu':
|
| 171 |
+
model.to(device=cpu)
|
| 172 |
+
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
| 173 |
+
return
|
| 174 |
+
|
| 175 |
+
for m in model.modules():
|
| 176 |
+
if get_cuda_free_memory_gb(target_device) >= preserved_memory_gb:
|
| 177 |
+
torch.cuda.empty_cache()
|
| 178 |
+
return
|
| 179 |
+
|
| 180 |
+
if hasattr(m, 'weight'):
|
| 181 |
+
m.to(device=cpu)
|
| 182 |
+
|
| 183 |
+
model.to(device=cpu)
|
| 184 |
+
torch.cuda.empty_cache()
|
| 185 |
+
return
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
def unload_complete_models(*args):
|
| 189 |
+
for m in gpu_complete_modules + list(args):
|
| 190 |
+
m.to(device=cpu)
|
| 191 |
+
print(f'Unloaded {m.__class__.__name__} as complete.')
|
| 192 |
+
|
| 193 |
+
gpu_complete_modules.clear()
|
| 194 |
+
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
| 195 |
+
return
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
def load_model_as_complete(model, target_device, unload=True):
|
| 199 |
+
# 如果是字符串,转换为设备
|
| 200 |
+
if isinstance(target_device, str):
|
| 201 |
+
target_device = torch.device(target_device)
|
| 202 |
+
|
| 203 |
+
if unload:
|
| 204 |
+
unload_complete_models()
|
| 205 |
+
|
| 206 |
+
model.to(device=target_device)
|
| 207 |
+
print(f'Loaded {model.__class__.__name__} to {target_device} as complete.')
|
| 208 |
+
|
| 209 |
+
gpu_complete_modules.append(model)
|
| 210 |
+
return
|
diffusers_helper/thread_utils.py
ADDED
|
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import time
|
| 2 |
+
|
| 3 |
+
from threading import Thread, Lock
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class Listener:
|
| 7 |
+
task_queue = []
|
| 8 |
+
lock = Lock()
|
| 9 |
+
thread = None
|
| 10 |
+
|
| 11 |
+
@classmethod
|
| 12 |
+
def _process_tasks(cls):
|
| 13 |
+
while True:
|
| 14 |
+
task = None
|
| 15 |
+
with cls.lock:
|
| 16 |
+
if cls.task_queue:
|
| 17 |
+
task = cls.task_queue.pop(0)
|
| 18 |
+
|
| 19 |
+
if task is None:
|
| 20 |
+
time.sleep(0.001)
|
| 21 |
+
continue
|
| 22 |
+
|
| 23 |
+
func, args, kwargs = task
|
| 24 |
+
try:
|
| 25 |
+
func(*args, **kwargs)
|
| 26 |
+
except Exception as e:
|
| 27 |
+
print(f"Error in listener thread: {e}")
|
| 28 |
+
|
| 29 |
+
@classmethod
|
| 30 |
+
def add_task(cls, func, *args, **kwargs):
|
| 31 |
+
with cls.lock:
|
| 32 |
+
cls.task_queue.append((func, args, kwargs))
|
| 33 |
+
|
| 34 |
+
if cls.thread is None:
|
| 35 |
+
cls.thread = Thread(target=cls._process_tasks, daemon=True)
|
| 36 |
+
cls.thread.start()
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def async_run(func, *args, **kwargs):
|
| 40 |
+
Listener.add_task(func, *args, **kwargs)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
class FIFOQueue:
|
| 44 |
+
def __init__(self):
|
| 45 |
+
self.queue = []
|
| 46 |
+
self.lock = Lock()
|
| 47 |
+
print("【调试】创建新的FIFOQueue")
|
| 48 |
+
|
| 49 |
+
def push(self, item):
|
| 50 |
+
print(f"【调试】FIFOQueue.push: 准备添加项目: {item}")
|
| 51 |
+
with self.lock:
|
| 52 |
+
self.queue.append(item)
|
| 53 |
+
print(f"【调试】FIFOQueue.push: 成功添加项目: {item}, 当前队列长度: {len(self.queue)}")
|
| 54 |
+
|
| 55 |
+
def pop(self):
|
| 56 |
+
print("【调试】FIFOQueue.pop: 准备弹出队列首项")
|
| 57 |
+
with self.lock:
|
| 58 |
+
if self.queue:
|
| 59 |
+
item = self.queue.pop(0)
|
| 60 |
+
print(f"【调试】FIFOQueue.pop: 成功弹出项目: {item}, 剩余队列长度: {len(self.queue)}")
|
| 61 |
+
return item
|
| 62 |
+
print("【调试】FIFOQueue.pop: 队列为空,返回None")
|
| 63 |
+
return None
|
| 64 |
+
|
| 65 |
+
def top(self):
|
| 66 |
+
print("【调试】FIFOQueue.top: 准备查看队列首项")
|
| 67 |
+
with self.lock:
|
| 68 |
+
if self.queue:
|
| 69 |
+
item = self.queue[0]
|
| 70 |
+
print(f"【调试】FIFOQueue.top: 队列首项为: {item}, 当前队列长度: {len(self.queue)}")
|
| 71 |
+
return item
|
| 72 |
+
print("【调试】FIFOQueue.top: 队列为空,返回None")
|
| 73 |
+
return None
|
| 74 |
+
|
| 75 |
+
def next(self):
|
| 76 |
+
print("【调试】FIFOQueue.next: 等待弹出队列首项")
|
| 77 |
+
while True:
|
| 78 |
+
with self.lock:
|
| 79 |
+
if self.queue:
|
| 80 |
+
item = self.queue.pop(0)
|
| 81 |
+
print(f"【调试】FIFOQueue.next: 成功弹出项目: {item}, 剩余队列长度: {len(self.queue)}")
|
| 82 |
+
return item
|
| 83 |
+
|
| 84 |
+
time.sleep(0.001)
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
class AsyncStream:
|
| 88 |
+
def __init__(self):
|
| 89 |
+
self.input_queue = FIFOQueue()
|
| 90 |
+
self.output_queue = FIFOQueue()
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
class InterruptibleStreamData:
|
| 94 |
+
def __init__(self):
|
| 95 |
+
self.input_queue = FIFOQueue()
|
| 96 |
+
self.output_queue = FIFOQueue()
|
| 97 |
+
print("【调试】创建新的InterruptibleStreamData,初始化输入输出队列")
|
| 98 |
+
|
| 99 |
+
# 推送数据至输出队列
|
| 100 |
+
def push_output(self, item):
|
| 101 |
+
print(f"【调试】InterruptibleStreamData.push_output: 准备推送输出: {type(item)}")
|
| 102 |
+
self.output_queue.push(item)
|
| 103 |
+
print(f"【调试】InterruptibleStreamData.push_output: 成功推送输出")
|
| 104 |
+
|
| 105 |
+
# 获取下一个输出数据
|
| 106 |
+
def get_output(self):
|
| 107 |
+
print("【调试】InterruptibleStreamData.get_output: 准备获取下一个输出数据")
|
| 108 |
+
item = self.output_queue.next()
|
| 109 |
+
print(f"【调试】InterruptibleStreamData.get_output: 获取到输出数据: {type(item)}")
|
| 110 |
+
return item
|
| 111 |
+
|
| 112 |
+
# 推送数据至输入队列
|
| 113 |
+
def push_input(self, item):
|
| 114 |
+
print(f"【调试】InterruptibleStreamData.push_input: 准备推送输入: {type(item)}")
|
| 115 |
+
self.input_queue.push(item)
|
| 116 |
+
print(f"【调试】InterruptibleStreamData.push_input: 成功推送输入")
|
| 117 |
+
|
| 118 |
+
# 获取下一个输入数据
|
| 119 |
+
def get_input(self):
|
| 120 |
+
print("【调试】InterruptibleStreamData.get_input: 准备获取下一个输入数据")
|
| 121 |
+
item = self.input_queue.next()
|
| 122 |
+
print(f"【调试】InterruptibleStreamData.get_input: 获取到输入数据: {type(item)}")
|
| 123 |
+
return item
|
diffusers_helper/utils.py
ADDED
|
@@ -0,0 +1,613 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import cv2
|
| 3 |
+
import json
|
| 4 |
+
import random
|
| 5 |
+
import glob
|
| 6 |
+
import torch
|
| 7 |
+
import einops
|
| 8 |
+
import numpy as np
|
| 9 |
+
import datetime
|
| 10 |
+
import torchvision
|
| 11 |
+
|
| 12 |
+
import safetensors.torch as sf
|
| 13 |
+
from PIL import Image
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def min_resize(x, m):
|
| 17 |
+
if x.shape[0] < x.shape[1]:
|
| 18 |
+
s0 = m
|
| 19 |
+
s1 = int(float(m) / float(x.shape[0]) * float(x.shape[1]))
|
| 20 |
+
else:
|
| 21 |
+
s0 = int(float(m) / float(x.shape[1]) * float(x.shape[0]))
|
| 22 |
+
s1 = m
|
| 23 |
+
new_max = max(s1, s0)
|
| 24 |
+
raw_max = max(x.shape[0], x.shape[1])
|
| 25 |
+
if new_max < raw_max:
|
| 26 |
+
interpolation = cv2.INTER_AREA
|
| 27 |
+
else:
|
| 28 |
+
interpolation = cv2.INTER_LANCZOS4
|
| 29 |
+
y = cv2.resize(x, (s1, s0), interpolation=interpolation)
|
| 30 |
+
return y
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def d_resize(x, y):
|
| 34 |
+
H, W, C = y.shape
|
| 35 |
+
new_min = min(H, W)
|
| 36 |
+
raw_min = min(x.shape[0], x.shape[1])
|
| 37 |
+
if new_min < raw_min:
|
| 38 |
+
interpolation = cv2.INTER_AREA
|
| 39 |
+
else:
|
| 40 |
+
interpolation = cv2.INTER_LANCZOS4
|
| 41 |
+
y = cv2.resize(x, (W, H), interpolation=interpolation)
|
| 42 |
+
return y
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def resize_and_center_crop(image, target_width, target_height):
|
| 46 |
+
if target_height == image.shape[0] and target_width == image.shape[1]:
|
| 47 |
+
return image
|
| 48 |
+
|
| 49 |
+
pil_image = Image.fromarray(image)
|
| 50 |
+
original_width, original_height = pil_image.size
|
| 51 |
+
scale_factor = max(target_width / original_width, target_height / original_height)
|
| 52 |
+
resized_width = int(round(original_width * scale_factor))
|
| 53 |
+
resized_height = int(round(original_height * scale_factor))
|
| 54 |
+
resized_image = pil_image.resize((resized_width, resized_height), Image.LANCZOS)
|
| 55 |
+
left = (resized_width - target_width) / 2
|
| 56 |
+
top = (resized_height - target_height) / 2
|
| 57 |
+
right = (resized_width + target_width) / 2
|
| 58 |
+
bottom = (resized_height + target_height) / 2
|
| 59 |
+
cropped_image = resized_image.crop((left, top, right, bottom))
|
| 60 |
+
return np.array(cropped_image)
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def resize_and_center_crop_pytorch(image, target_width, target_height):
|
| 64 |
+
B, C, H, W = image.shape
|
| 65 |
+
|
| 66 |
+
if H == target_height and W == target_width:
|
| 67 |
+
return image
|
| 68 |
+
|
| 69 |
+
scale_factor = max(target_width / W, target_height / H)
|
| 70 |
+
resized_width = int(round(W * scale_factor))
|
| 71 |
+
resized_height = int(round(H * scale_factor))
|
| 72 |
+
|
| 73 |
+
resized = torch.nn.functional.interpolate(image, size=(resized_height, resized_width), mode='bilinear', align_corners=False)
|
| 74 |
+
|
| 75 |
+
top = (resized_height - target_height) // 2
|
| 76 |
+
left = (resized_width - target_width) // 2
|
| 77 |
+
cropped = resized[:, :, top:top + target_height, left:left + target_width]
|
| 78 |
+
|
| 79 |
+
return cropped
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def resize_without_crop(image, target_width, target_height):
|
| 83 |
+
if target_height == image.shape[0] and target_width == image.shape[1]:
|
| 84 |
+
return image
|
| 85 |
+
|
| 86 |
+
pil_image = Image.fromarray(image)
|
| 87 |
+
resized_image = pil_image.resize((target_width, target_height), Image.LANCZOS)
|
| 88 |
+
return np.array(resized_image)
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def just_crop(image, w, h):
|
| 92 |
+
if h == image.shape[0] and w == image.shape[1]:
|
| 93 |
+
return image
|
| 94 |
+
|
| 95 |
+
original_height, original_width = image.shape[:2]
|
| 96 |
+
k = min(original_height / h, original_width / w)
|
| 97 |
+
new_width = int(round(w * k))
|
| 98 |
+
new_height = int(round(h * k))
|
| 99 |
+
x_start = (original_width - new_width) // 2
|
| 100 |
+
y_start = (original_height - new_height) // 2
|
| 101 |
+
cropped_image = image[y_start:y_start + new_height, x_start:x_start + new_width]
|
| 102 |
+
return cropped_image
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def write_to_json(data, file_path):
|
| 106 |
+
temp_file_path = file_path + ".tmp"
|
| 107 |
+
with open(temp_file_path, 'wt', encoding='utf-8') as temp_file:
|
| 108 |
+
json.dump(data, temp_file, indent=4)
|
| 109 |
+
os.replace(temp_file_path, file_path)
|
| 110 |
+
return
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
def read_from_json(file_path):
|
| 114 |
+
with open(file_path, 'rt', encoding='utf-8') as file:
|
| 115 |
+
data = json.load(file)
|
| 116 |
+
return data
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
def get_active_parameters(m):
|
| 120 |
+
return {k: v for k, v in m.named_parameters() if v.requires_grad}
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
def cast_training_params(m, dtype=torch.float32):
|
| 124 |
+
result = {}
|
| 125 |
+
for n, param in m.named_parameters():
|
| 126 |
+
if param.requires_grad:
|
| 127 |
+
param.data = param.to(dtype)
|
| 128 |
+
result[n] = param
|
| 129 |
+
return result
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
def separate_lora_AB(parameters, B_patterns=None):
|
| 133 |
+
parameters_normal = {}
|
| 134 |
+
parameters_B = {}
|
| 135 |
+
|
| 136 |
+
if B_patterns is None:
|
| 137 |
+
B_patterns = ['.lora_B.', '__zero__']
|
| 138 |
+
|
| 139 |
+
for k, v in parameters.items():
|
| 140 |
+
if any(B_pattern in k for B_pattern in B_patterns):
|
| 141 |
+
parameters_B[k] = v
|
| 142 |
+
else:
|
| 143 |
+
parameters_normal[k] = v
|
| 144 |
+
|
| 145 |
+
return parameters_normal, parameters_B
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def set_attr_recursive(obj, attr, value):
|
| 149 |
+
attrs = attr.split(".")
|
| 150 |
+
for name in attrs[:-1]:
|
| 151 |
+
obj = getattr(obj, name)
|
| 152 |
+
setattr(obj, attrs[-1], value)
|
| 153 |
+
return
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
def print_tensor_list_size(tensors):
|
| 157 |
+
total_size = 0
|
| 158 |
+
total_elements = 0
|
| 159 |
+
|
| 160 |
+
if isinstance(tensors, dict):
|
| 161 |
+
tensors = tensors.values()
|
| 162 |
+
|
| 163 |
+
for tensor in tensors:
|
| 164 |
+
total_size += tensor.nelement() * tensor.element_size()
|
| 165 |
+
total_elements += tensor.nelement()
|
| 166 |
+
|
| 167 |
+
total_size_MB = total_size / (1024 ** 2)
|
| 168 |
+
total_elements_B = total_elements / 1e9
|
| 169 |
+
|
| 170 |
+
print(f"Total number of tensors: {len(tensors)}")
|
| 171 |
+
print(f"Total size of tensors: {total_size_MB:.2f} MB")
|
| 172 |
+
print(f"Total number of parameters: {total_elements_B:.3f} billion")
|
| 173 |
+
return
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
@torch.no_grad()
|
| 177 |
+
def batch_mixture(a, b=None, probability_a=0.5, mask_a=None):
|
| 178 |
+
batch_size = a.size(0)
|
| 179 |
+
|
| 180 |
+
if b is None:
|
| 181 |
+
b = torch.zeros_like(a)
|
| 182 |
+
|
| 183 |
+
if mask_a is None:
|
| 184 |
+
mask_a = torch.rand(batch_size) < probability_a
|
| 185 |
+
|
| 186 |
+
mask_a = mask_a.to(a.device)
|
| 187 |
+
mask_a = mask_a.reshape((batch_size,) + (1,) * (a.dim() - 1))
|
| 188 |
+
result = torch.where(mask_a, a, b)
|
| 189 |
+
return result
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
@torch.no_grad()
|
| 193 |
+
def zero_module(module):
|
| 194 |
+
for p in module.parameters():
|
| 195 |
+
p.detach().zero_()
|
| 196 |
+
return module
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
@torch.no_grad()
|
| 200 |
+
def supress_lower_channels(m, k, alpha=0.01):
|
| 201 |
+
data = m.weight.data.clone()
|
| 202 |
+
|
| 203 |
+
assert int(data.shape[1]) >= k
|
| 204 |
+
|
| 205 |
+
data[:, :k] = data[:, :k] * alpha
|
| 206 |
+
m.weight.data = data.contiguous().clone()
|
| 207 |
+
return m
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
def freeze_module(m):
|
| 211 |
+
if not hasattr(m, '_forward_inside_frozen_module'):
|
| 212 |
+
m._forward_inside_frozen_module = m.forward
|
| 213 |
+
m.requires_grad_(False)
|
| 214 |
+
m.forward = torch.no_grad()(m.forward)
|
| 215 |
+
return m
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
def get_latest_safetensors(folder_path):
|
| 219 |
+
safetensors_files = glob.glob(os.path.join(folder_path, '*.safetensors'))
|
| 220 |
+
|
| 221 |
+
if not safetensors_files:
|
| 222 |
+
raise ValueError('No file to resume!')
|
| 223 |
+
|
| 224 |
+
latest_file = max(safetensors_files, key=os.path.getmtime)
|
| 225 |
+
latest_file = os.path.abspath(os.path.realpath(latest_file))
|
| 226 |
+
return latest_file
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
def generate_random_prompt_from_tags(tags_str, min_length=3, max_length=32):
|
| 230 |
+
tags = tags_str.split(', ')
|
| 231 |
+
tags = random.sample(tags, k=min(random.randint(min_length, max_length), len(tags)))
|
| 232 |
+
prompt = ', '.join(tags)
|
| 233 |
+
return prompt
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
def interpolate_numbers(a, b, n, round_to_int=False, gamma=1.0):
|
| 237 |
+
numbers = a + (b - a) * (np.linspace(0, 1, n) ** gamma)
|
| 238 |
+
if round_to_int:
|
| 239 |
+
numbers = np.round(numbers).astype(int)
|
| 240 |
+
return numbers.tolist()
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
def uniform_random_by_intervals(inclusive, exclusive, n, round_to_int=False):
|
| 244 |
+
edges = np.linspace(0, 1, n + 1)
|
| 245 |
+
points = np.random.uniform(edges[:-1], edges[1:])
|
| 246 |
+
numbers = inclusive + (exclusive - inclusive) * points
|
| 247 |
+
if round_to_int:
|
| 248 |
+
numbers = np.round(numbers).astype(int)
|
| 249 |
+
return numbers.tolist()
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
def soft_append_bcthw(history, current, overlap=0):
|
| 253 |
+
if overlap <= 0:
|
| 254 |
+
return torch.cat([history, current], dim=2)
|
| 255 |
+
|
| 256 |
+
assert history.shape[2] >= overlap, f"History length ({history.shape[2]}) must be >= overlap ({overlap})"
|
| 257 |
+
assert current.shape[2] >= overlap, f"Current length ({current.shape[2]}) must be >= overlap ({overlap})"
|
| 258 |
+
|
| 259 |
+
weights = torch.linspace(1, 0, overlap, dtype=history.dtype, device=history.device).view(1, 1, -1, 1, 1)
|
| 260 |
+
blended = weights * history[:, :, -overlap:] + (1 - weights) * current[:, :, :overlap]
|
| 261 |
+
output = torch.cat([history[:, :, :-overlap], blended, current[:, :, overlap:]], dim=2)
|
| 262 |
+
|
| 263 |
+
return output.to(history)
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
def save_bcthw_as_mp4(x, output_filename, fps=10):
|
| 267 |
+
b, c, t, h, w = x.shape
|
| 268 |
+
|
| 269 |
+
per_row = b
|
| 270 |
+
for p in [6, 5, 4, 3, 2]:
|
| 271 |
+
if b % p == 0:
|
| 272 |
+
per_row = p
|
| 273 |
+
break
|
| 274 |
+
|
| 275 |
+
os.makedirs(os.path.dirname(os.path.abspath(os.path.realpath(output_filename))), exist_ok=True)
|
| 276 |
+
x = torch.clamp(x.float(), -1., 1.) * 127.5 + 127.5
|
| 277 |
+
x = x.detach().cpu().to(torch.uint8)
|
| 278 |
+
x = einops.rearrange(x, '(m n) c t h w -> t (m h) (n w) c', n=per_row)
|
| 279 |
+
torchvision.io.write_video(output_filename, x, fps=fps, video_codec='libx264', options={'crf': '0'})
|
| 280 |
+
return x
|
| 281 |
+
|
| 282 |
+
|
| 283 |
+
def save_bcthw_as_png(x, output_filename):
|
| 284 |
+
os.makedirs(os.path.dirname(os.path.abspath(os.path.realpath(output_filename))), exist_ok=True)
|
| 285 |
+
x = torch.clamp(x.float(), -1., 1.) * 127.5 + 127.5
|
| 286 |
+
x = x.detach().cpu().to(torch.uint8)
|
| 287 |
+
x = einops.rearrange(x, 'b c t h w -> c (b h) (t w)')
|
| 288 |
+
torchvision.io.write_png(x, output_filename)
|
| 289 |
+
return output_filename
|
| 290 |
+
|
| 291 |
+
|
| 292 |
+
def save_bchw_as_png(x, output_filename):
|
| 293 |
+
os.makedirs(os.path.dirname(os.path.abspath(os.path.realpath(output_filename))), exist_ok=True)
|
| 294 |
+
x = torch.clamp(x.float(), -1., 1.) * 127.5 + 127.5
|
| 295 |
+
x = x.detach().cpu().to(torch.uint8)
|
| 296 |
+
x = einops.rearrange(x, 'b c h w -> c h (b w)')
|
| 297 |
+
torchvision.io.write_png(x, output_filename)
|
| 298 |
+
return output_filename
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
def add_tensors_with_padding(tensor1, tensor2):
|
| 302 |
+
if tensor1.shape == tensor2.shape:
|
| 303 |
+
return tensor1 + tensor2
|
| 304 |
+
|
| 305 |
+
shape1 = tensor1.shape
|
| 306 |
+
shape2 = tensor2.shape
|
| 307 |
+
|
| 308 |
+
new_shape = tuple(max(s1, s2) for s1, s2 in zip(shape1, shape2))
|
| 309 |
+
|
| 310 |
+
padded_tensor1 = torch.zeros(new_shape)
|
| 311 |
+
padded_tensor2 = torch.zeros(new_shape)
|
| 312 |
+
|
| 313 |
+
padded_tensor1[tuple(slice(0, s) for s in shape1)] = tensor1
|
| 314 |
+
padded_tensor2[tuple(slice(0, s) for s in shape2)] = tensor2
|
| 315 |
+
|
| 316 |
+
result = padded_tensor1 + padded_tensor2
|
| 317 |
+
return result
|
| 318 |
+
|
| 319 |
+
|
| 320 |
+
def print_free_mem():
|
| 321 |
+
torch.cuda.empty_cache()
|
| 322 |
+
free_mem, total_mem = torch.cuda.mem_get_info(0)
|
| 323 |
+
free_mem_mb = free_mem / (1024 ** 2)
|
| 324 |
+
total_mem_mb = total_mem / (1024 ** 2)
|
| 325 |
+
print(f"Free memory: {free_mem_mb:.2f} MB")
|
| 326 |
+
print(f"Total memory: {total_mem_mb:.2f} MB")
|
| 327 |
+
return
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
def print_gpu_parameters(device, state_dict, log_count=1):
|
| 331 |
+
summary = {"device": device, "keys_count": len(state_dict)}
|
| 332 |
+
|
| 333 |
+
logged_params = {}
|
| 334 |
+
for i, (key, tensor) in enumerate(state_dict.items()):
|
| 335 |
+
if i >= log_count:
|
| 336 |
+
break
|
| 337 |
+
logged_params[key] = tensor.flatten()[:3].tolist()
|
| 338 |
+
|
| 339 |
+
summary["params"] = logged_params
|
| 340 |
+
|
| 341 |
+
print(str(summary))
|
| 342 |
+
return
|
| 343 |
+
|
| 344 |
+
|
| 345 |
+
def visualize_txt_as_img(width, height, text, font_path='font/DejaVuSans.ttf', size=18):
|
| 346 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 347 |
+
|
| 348 |
+
txt = Image.new("RGB", (width, height), color="white")
|
| 349 |
+
draw = ImageDraw.Draw(txt)
|
| 350 |
+
font = ImageFont.truetype(font_path, size=size)
|
| 351 |
+
|
| 352 |
+
if text == '':
|
| 353 |
+
return np.array(txt)
|
| 354 |
+
|
| 355 |
+
# Split text into lines that fit within the image width
|
| 356 |
+
lines = []
|
| 357 |
+
words = text.split()
|
| 358 |
+
current_line = words[0]
|
| 359 |
+
|
| 360 |
+
for word in words[1:]:
|
| 361 |
+
line_with_word = f"{current_line} {word}"
|
| 362 |
+
if draw.textbbox((0, 0), line_with_word, font=font)[2] <= width:
|
| 363 |
+
current_line = line_with_word
|
| 364 |
+
else:
|
| 365 |
+
lines.append(current_line)
|
| 366 |
+
current_line = word
|
| 367 |
+
|
| 368 |
+
lines.append(current_line)
|
| 369 |
+
|
| 370 |
+
# Draw the text line by line
|
| 371 |
+
y = 0
|
| 372 |
+
line_height = draw.textbbox((0, 0), "A", font=font)[3]
|
| 373 |
+
|
| 374 |
+
for line in lines:
|
| 375 |
+
if y + line_height > height:
|
| 376 |
+
break # stop drawing if the next line will be outside the image
|
| 377 |
+
draw.text((0, y), line, fill="black", font=font)
|
| 378 |
+
y += line_height
|
| 379 |
+
|
| 380 |
+
return np.array(txt)
|
| 381 |
+
|
| 382 |
+
|
| 383 |
+
def blue_mark(x):
|
| 384 |
+
x = x.copy()
|
| 385 |
+
c = x[:, :, 2]
|
| 386 |
+
b = cv2.blur(c, (9, 9))
|
| 387 |
+
x[:, :, 2] = ((c - b) * 16.0 + b).clip(-1, 1)
|
| 388 |
+
return x
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
def green_mark(x):
|
| 392 |
+
x = x.copy()
|
| 393 |
+
x[:, :, 2] = -1
|
| 394 |
+
x[:, :, 0] = -1
|
| 395 |
+
return x
|
| 396 |
+
|
| 397 |
+
|
| 398 |
+
def frame_mark(x):
|
| 399 |
+
x = x.copy()
|
| 400 |
+
x[:64] = -1
|
| 401 |
+
x[-64:] = -1
|
| 402 |
+
x[:, :8] = 1
|
| 403 |
+
x[:, -8:] = 1
|
| 404 |
+
return x
|
| 405 |
+
|
| 406 |
+
|
| 407 |
+
@torch.inference_mode()
|
| 408 |
+
def pytorch2numpy(imgs):
|
| 409 |
+
results = []
|
| 410 |
+
for x in imgs:
|
| 411 |
+
y = x.movedim(0, -1)
|
| 412 |
+
y = y * 127.5 + 127.5
|
| 413 |
+
y = y.detach().float().cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 414 |
+
results.append(y)
|
| 415 |
+
return results
|
| 416 |
+
|
| 417 |
+
|
| 418 |
+
@torch.inference_mode()
|
| 419 |
+
def numpy2pytorch(imgs):
|
| 420 |
+
h = torch.from_numpy(np.stack(imgs, axis=0)).float() / 127.5 - 1.0
|
| 421 |
+
h = h.movedim(-1, 1)
|
| 422 |
+
return h
|
| 423 |
+
|
| 424 |
+
|
| 425 |
+
@torch.no_grad()
|
| 426 |
+
def duplicate_prefix_to_suffix(x, count, zero_out=False):
|
| 427 |
+
if zero_out:
|
| 428 |
+
return torch.cat([x, torch.zeros_like(x[:count])], dim=0)
|
| 429 |
+
else:
|
| 430 |
+
return torch.cat([x, x[:count]], dim=0)
|
| 431 |
+
|
| 432 |
+
|
| 433 |
+
def weighted_mse(a, b, weight):
|
| 434 |
+
return torch.mean(weight.float() * (a.float() - b.float()) ** 2)
|
| 435 |
+
|
| 436 |
+
|
| 437 |
+
def clamped_linear_interpolation(x, x_min, y_min, x_max, y_max, sigma=1.0):
|
| 438 |
+
x = (x - x_min) / (x_max - x_min)
|
| 439 |
+
x = max(0.0, min(x, 1.0))
|
| 440 |
+
x = x ** sigma
|
| 441 |
+
return y_min + x * (y_max - y_min)
|
| 442 |
+
|
| 443 |
+
|
| 444 |
+
def expand_to_dims(x, target_dims):
|
| 445 |
+
return x.view(*x.shape, *([1] * max(0, target_dims - x.dim())))
|
| 446 |
+
|
| 447 |
+
|
| 448 |
+
def repeat_to_batch_size(tensor: torch.Tensor, batch_size: int):
|
| 449 |
+
if tensor is None:
|
| 450 |
+
return None
|
| 451 |
+
|
| 452 |
+
first_dim = tensor.shape[0]
|
| 453 |
+
|
| 454 |
+
if first_dim == batch_size:
|
| 455 |
+
return tensor
|
| 456 |
+
|
| 457 |
+
if batch_size % first_dim != 0:
|
| 458 |
+
raise ValueError(f"Cannot evenly repeat first dim {first_dim} to match batch_size {batch_size}.")
|
| 459 |
+
|
| 460 |
+
repeat_times = batch_size // first_dim
|
| 461 |
+
|
| 462 |
+
return tensor.repeat(repeat_times, *[1] * (tensor.dim() - 1))
|
| 463 |
+
|
| 464 |
+
|
| 465 |
+
def dim5(x):
|
| 466 |
+
return expand_to_dims(x, 5)
|
| 467 |
+
|
| 468 |
+
|
| 469 |
+
def dim4(x):
|
| 470 |
+
return expand_to_dims(x, 4)
|
| 471 |
+
|
| 472 |
+
|
| 473 |
+
def dim3(x):
|
| 474 |
+
return expand_to_dims(x, 3)
|
| 475 |
+
|
| 476 |
+
|
| 477 |
+
def crop_or_pad_yield_mask(x, length):
|
| 478 |
+
B, F, C = x.shape
|
| 479 |
+
device = x.device
|
| 480 |
+
dtype = x.dtype
|
| 481 |
+
|
| 482 |
+
if F < length:
|
| 483 |
+
y = torch.zeros((B, length, C), dtype=dtype, device=device)
|
| 484 |
+
mask = torch.zeros((B, length), dtype=torch.bool, device=device)
|
| 485 |
+
y[:, :F, :] = x
|
| 486 |
+
mask[:, :F] = True
|
| 487 |
+
return y, mask
|
| 488 |
+
|
| 489 |
+
return x[:, :length, :], torch.ones((B, length), dtype=torch.bool, device=device)
|
| 490 |
+
|
| 491 |
+
|
| 492 |
+
def extend_dim(x, dim, minimal_length, zero_pad=False):
|
| 493 |
+
original_length = int(x.shape[dim])
|
| 494 |
+
|
| 495 |
+
if original_length >= minimal_length:
|
| 496 |
+
return x
|
| 497 |
+
|
| 498 |
+
if zero_pad:
|
| 499 |
+
padding_shape = list(x.shape)
|
| 500 |
+
padding_shape[dim] = minimal_length - original_length
|
| 501 |
+
padding = torch.zeros(padding_shape, dtype=x.dtype, device=x.device)
|
| 502 |
+
else:
|
| 503 |
+
idx = (slice(None),) * dim + (slice(-1, None),) + (slice(None),) * (len(x.shape) - dim - 1)
|
| 504 |
+
last_element = x[idx]
|
| 505 |
+
padding = last_element.repeat_interleave(minimal_length - original_length, dim=dim)
|
| 506 |
+
|
| 507 |
+
return torch.cat([x, padding], dim=dim)
|
| 508 |
+
|
| 509 |
+
|
| 510 |
+
def lazy_positional_encoding(t, repeats=None):
|
| 511 |
+
if not isinstance(t, list):
|
| 512 |
+
t = [t]
|
| 513 |
+
|
| 514 |
+
from diffusers.models.embeddings import get_timestep_embedding
|
| 515 |
+
|
| 516 |
+
te = torch.tensor(t)
|
| 517 |
+
te = get_timestep_embedding(timesteps=te, embedding_dim=256, flip_sin_to_cos=True, downscale_freq_shift=0.0, scale=1.0)
|
| 518 |
+
|
| 519 |
+
if repeats is None:
|
| 520 |
+
return te
|
| 521 |
+
|
| 522 |
+
te = te[:, None, :].expand(-1, repeats, -1)
|
| 523 |
+
|
| 524 |
+
return te
|
| 525 |
+
|
| 526 |
+
|
| 527 |
+
def state_dict_offset_merge(A, B, C=None):
|
| 528 |
+
result = {}
|
| 529 |
+
keys = A.keys()
|
| 530 |
+
|
| 531 |
+
for key in keys:
|
| 532 |
+
A_value = A[key]
|
| 533 |
+
B_value = B[key].to(A_value)
|
| 534 |
+
|
| 535 |
+
if C is None:
|
| 536 |
+
result[key] = A_value + B_value
|
| 537 |
+
else:
|
| 538 |
+
C_value = C[key].to(A_value)
|
| 539 |
+
result[key] = A_value + B_value - C_value
|
| 540 |
+
|
| 541 |
+
return result
|
| 542 |
+
|
| 543 |
+
|
| 544 |
+
def state_dict_weighted_merge(state_dicts, weights):
|
| 545 |
+
if len(state_dicts) != len(weights):
|
| 546 |
+
raise ValueError("Number of state dictionaries must match number of weights")
|
| 547 |
+
|
| 548 |
+
if not state_dicts:
|
| 549 |
+
return {}
|
| 550 |
+
|
| 551 |
+
total_weight = sum(weights)
|
| 552 |
+
|
| 553 |
+
if total_weight == 0:
|
| 554 |
+
raise ValueError("Sum of weights cannot be zero")
|
| 555 |
+
|
| 556 |
+
normalized_weights = [w / total_weight for w in weights]
|
| 557 |
+
|
| 558 |
+
keys = state_dicts[0].keys()
|
| 559 |
+
result = {}
|
| 560 |
+
|
| 561 |
+
for key in keys:
|
| 562 |
+
result[key] = state_dicts[0][key] * normalized_weights[0]
|
| 563 |
+
|
| 564 |
+
for i in range(1, len(state_dicts)):
|
| 565 |
+
state_dict_value = state_dicts[i][key].to(result[key])
|
| 566 |
+
result[key] += state_dict_value * normalized_weights[i]
|
| 567 |
+
|
| 568 |
+
return result
|
| 569 |
+
|
| 570 |
+
|
| 571 |
+
def group_files_by_folder(all_files):
|
| 572 |
+
grouped_files = {}
|
| 573 |
+
|
| 574 |
+
for file in all_files:
|
| 575 |
+
folder_name = os.path.basename(os.path.dirname(file))
|
| 576 |
+
if folder_name not in grouped_files:
|
| 577 |
+
grouped_files[folder_name] = []
|
| 578 |
+
grouped_files[folder_name].append(file)
|
| 579 |
+
|
| 580 |
+
list_of_lists = list(grouped_files.values())
|
| 581 |
+
return list_of_lists
|
| 582 |
+
|
| 583 |
+
|
| 584 |
+
def generate_timestamp():
|
| 585 |
+
now = datetime.datetime.now()
|
| 586 |
+
timestamp = now.strftime('%y%m%d_%H%M%S')
|
| 587 |
+
milliseconds = f"{int(now.microsecond / 1000):03d}"
|
| 588 |
+
random_number = random.randint(0, 9999)
|
| 589 |
+
return f"{timestamp}_{milliseconds}_{random_number}"
|
| 590 |
+
|
| 591 |
+
|
| 592 |
+
def write_PIL_image_with_png_info(image, metadata, path):
|
| 593 |
+
from PIL.PngImagePlugin import PngInfo
|
| 594 |
+
|
| 595 |
+
png_info = PngInfo()
|
| 596 |
+
for key, value in metadata.items():
|
| 597 |
+
png_info.add_text(key, value)
|
| 598 |
+
|
| 599 |
+
image.save(path, "PNG", pnginfo=png_info)
|
| 600 |
+
return image
|
| 601 |
+
|
| 602 |
+
|
| 603 |
+
def torch_safe_save(content, path):
|
| 604 |
+
torch.save(content, path + '_tmp')
|
| 605 |
+
os.replace(path + '_tmp', path)
|
| 606 |
+
return path
|
| 607 |
+
|
| 608 |
+
|
| 609 |
+
def move_optimizer_to_device(optimizer, device):
|
| 610 |
+
for state in optimizer.state.values():
|
| 611 |
+
for k, v in state.items():
|
| 612 |
+
if isinstance(v, torch.Tensor):
|
| 613 |
+
state[k] = v.to(device)
|