Spaces:
Sleeping
Sleeping
import base64 | |
import json | |
import os | |
import time | |
import zipfile | |
from pathlib import Path | |
import re | |
import uuid | |
import pymupdf | |
# ์ด๋ฏธ์ง ์ ์ฒ๋ฆฌ์ ํ์ํ ๋ผ์ด๋ธ๋ฌ๋ฆฌ | |
import cv2 | |
import numpy as np | |
############################### | |
# ํ๊ฒฝ ์ค์ | |
############################### | |
os.system('pip uninstall -y magic-pdf') | |
os.system('pip install git+https://github.com/opendatalab/MinerU.git@dev') | |
# โ OpenCV ์ค์น (headless ๋ฒ์ ) | |
os.system('pip install opencv-python-headless') | |
os.system('wget https://github.com/opendatalab/MinerU/raw/dev/scripts/download_models_hf.py -O download_models_hf.py') | |
os.system('python download_models_hf.py') | |
with open('/home/user/magic-pdf.json', 'r') as file: | |
data = json.load(file) | |
data['device-mode'] = "cuda" | |
if os.getenv('apikey'): | |
data['llm-aided-config']['title_aided']['api_key'] = os.getenv('apikey') | |
data['llm-aided-config']['title_aided']['enable'] = True | |
with open('/home/user/magic-pdf.json', 'w') as file: | |
json.dump(data, file, indent=4) | |
os.system('cp -r paddleocr /home/user/.paddleocr') | |
############################### | |
# ๊ทธ ์ธ ๋ผ์ด๋ธ๋ฌ๋ฆฌ | |
############################### | |
import gradio as gr | |
from loguru import logger | |
from gradio_pdf import PDF | |
############################### | |
# magic_pdf ๊ด๋ จ ๋ชจ๋ | |
############################### | |
from magic_pdf.data.data_reader_writer import FileBasedDataReader | |
from magic_pdf.libs.hash_utils import compute_sha256 | |
from magic_pdf.tools.common import do_parse, prepare_env | |
############################### | |
# ๊ณตํต ํจ์๋ค | |
############################### | |
def create_css(): | |
""" | |
๊ธฐ๋ณธ CSS ์คํ์ผ. | |
""" | |
return """ | |
.gradio-container { | |
width: 100vw !important; | |
min-height: 100vh !important; | |
margin: 0 !important; | |
padding: 0 !important; | |
background: linear-gradient(135deg, #EFF6FF 0%, #F5F3FF 100%); | |
display: flex; | |
flex-direction: column; | |
overflow-y: auto !important; | |
} | |
.title-area { | |
text-align: center; | |
margin: 1rem auto; | |
padding: 1rem; | |
background: white; | |
border-radius: 1rem; | |
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1); | |
max-width: 800px; | |
} | |
.title-area h1 { | |
background: linear-gradient(90deg, #2563EB 0%, #7C3AED 100%); | |
-webkit-background-clip: text; | |
-webkit-text-fill-color: transparent; | |
font-size: 2.5rem; | |
font-weight: bold; | |
margin-bottom: 0.5rem; | |
} | |
.title-area p { | |
color: #6B7280; | |
font-size: 1.1rem; | |
} | |
.invisible { | |
display: none !important; | |
} | |
.gr-block, .gr-box { | |
padding: 0.5rem !important; | |
} | |
""" | |
def read_fn(path): | |
disk_rw = FileBasedDataReader(os.path.dirname(path)) | |
return disk_rw.read(os.path.basename(path)) | |
def parse_pdf(doc_path, output_dir, end_page_id, is_ocr, layout_mode, formula_enable, table_enable, language): | |
os.makedirs(output_dir, exist_ok=True) | |
try: | |
file_name = f"{str(Path(doc_path).stem)}_{time.time()}" | |
pdf_data = read_fn(doc_path) | |
parse_method = "ocr" if is_ocr else "auto" | |
local_image_dir, local_md_dir = prepare_env(output_dir, file_name, parse_method) | |
do_parse( | |
output_dir, | |
file_name, | |
pdf_data, | |
[], | |
parse_method, | |
False, | |
end_page_id=end_page_id, | |
layout_model=layout_mode, | |
formula_enable=formula_enable, | |
table_enable=table_enable, | |
lang=language, | |
f_dump_orig_pdf=False | |
) | |
return local_md_dir, file_name | |
except Exception as e: | |
logger.exception(e) | |
def compress_directory_to_zip(directory_path, output_zip_path): | |
try: | |
with zipfile.ZipFile(output_zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf: | |
for root, dirs, files in os.walk(directory_path): | |
for file in files: | |
file_path = os.path.join(root, file) | |
arcname = os.path.relpath(file_path, directory_path) | |
zipf.write(file_path, arcname) | |
return 0 | |
except Exception as e: | |
logger.exception(e) | |
return -1 | |
def image_to_base64(image_path): | |
with open(image_path, "rb") as image_file: | |
return base64.b64encode(image_file.read()).decode('utf-8') | |
def replace_image_with_base64(markdown_text, image_dir_path): | |
pattern = r'\!\[(?:[^\]]*)\]\(([^)]+)\)' | |
def replace(match): | |
relative_path = match.group(1) | |
full_path = os.path.join(image_dir_path, relative_path) | |
base64_image = image_to_base64(full_path) | |
return f"" | |
return re.sub(pattern, replace, markdown_text) | |
############################### | |
# ์ด๋ฏธ์ง ์ ์ฒ๋ฆฌ ํจ์ (Grayscale/Binarization + Deskew) | |
############################### | |
def preprocess_image(image_path): | |
""" | |
1) Grayscale + Binarization(OTSU) | |
2) Deskew(๊ธฐ์ธ์ ๋ณด์ ) | |
์ ์ฒ๋ฆฌ๋ ์ด๋ฏธ์ง๋ฅผ ์์ ๊ฒฝ๋ก์ ์ ์ฅ ํ ํด๋น ๊ฒฝ๋ก๋ฅผ ๋ฐํ | |
""" | |
img = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE) | |
if img is None: | |
# ์ด๋ฏธ์ง ํ์ผ์ด ์๋ ๊ฒฝ์ฐ ํน์ ๋ก๋ฉ ์คํจ ์ ์๋ณธ ๊ฒฝ๋ก ๊ทธ๋๋ก ๋ฐํ | |
return image_path | |
# (a) ์ด์งํ(binarization) | |
_, img_bin = cv2.threshold(img, 0, 255, cv2.THRESH_OTSU | cv2.THRESH_BINARY) | |
# (b) ๊ธฐ์ธ์ ๋ณด์ (deskew) | |
coords = np.column_stack(np.where(img_bin > 0)) | |
angle = cv2.minAreaRect(coords)[-1] | |
# OpenCV๋ ํ์ ๊ฐ๋๋ฅผ [-90, 0)๋ก ๋ฐํํ ๋๊ฐ ๋ง์ผ๋ฏ๋ก ๋ณด์ | |
if angle < -45: | |
angle = -(90 + angle) | |
else: | |
angle = -angle | |
(h, w) = img_bin.shape[:2] | |
center = (w // 2, h // 2) | |
M = cv2.getRotationMatrix2D(center, angle, 1.0) | |
img_rotated = cv2.warpAffine( | |
img_bin, | |
M, | |
(w, h), | |
flags=cv2.INTER_CUBIC, | |
borderMode=cv2.BORDER_CONSTANT, | |
borderValue=255 | |
) | |
# ์์ ํ์ผ๋ก ์ ์ฅ | |
preprocessed_path = image_path + "_preprocessed.png" | |
cv2.imwrite(preprocessed_path, img_rotated) | |
return preprocessed_path | |
def to_pdf(file_path): | |
""" | |
์ด๋ฏธ์ง(JPG/PNG ๋ฑ)๋ฅผ PDF๋ก ์ปจ๋ฒํ ํ๋, | |
์ด๋ฏธ์ง์ผ ๊ฒฝ์ฐ ์ ์ฒ๋ฆฌ(Grayscale/Binarization + Deskew)๋ฅผ ๋จผ์ ์ ์ฉ | |
""" | |
with pymupdf.open(file_path) as f: | |
if f.is_pdf: | |
return file_path | |
else: | |
# ์ด๋ฏธ์ง ํ์ผ์ธ ๊ฒฝ์ฐ, ์ ์ฒ๋ฆฌ ์ํ ํ PDF ์์ฑ | |
f.close() | |
preprocessed_path = preprocess_image(file_path) | |
# ์ ์ฒ๋ฆฌ๋ ์ด๋ฏธ์ง๋ฅผ ๋ค์ PyMuPDF๋ก ์ด์ด์ PDF ๋ณํ | |
with pymupdf.open(preprocessed_path) as img_doc: | |
pdf_bytes = img_doc.convert_to_pdf() | |
unique_filename = f"{uuid.uuid4()}.pdf" | |
tmp_file_path = os.path.join(os.path.dirname(file_path), unique_filename) | |
with open(tmp_file_path, 'wb') as tmp_pdf_file: | |
tmp_pdf_file.write(pdf_bytes) | |
return tmp_file_path | |
def to_markdown(file_path, end_pages, is_ocr, layout_mode, formula_enable, table_enable, language, progress=gr.Progress(track_tqdm=False)): | |
""" | |
์ ๋ก๋๋ PDF/์ด๋ฏธ์ง -> PDF ๋ณํ -> ๋งํฌ๋ค์ด ๋ณํ | |
(ํ๋ก๊ทธ๋ ์ค ๋ฐ ํ์์ฉ) | |
""" | |
progress(0, "PDF๋ก ๋ณํ ์ค...") | |
file_path = to_pdf(file_path) | |
time.sleep(0.5) | |
if end_pages > 20: | |
end_pages = 20 | |
progress(20, "๋ฌธ์ ํ์ฑ ์ค...") | |
local_md_dir, file_name = parse_pdf(file_path, './output', end_pages - 1, is_ocr, | |
layout_mode, formula_enable, table_enable, language) | |
time.sleep(0.5) | |
progress(50, "์์ถ(zip) ์์ฑ ์ค...") | |
archive_zip_path = os.path.join("./output", compute_sha256(local_md_dir) + ".zip") | |
zip_archive_success = compress_directory_to_zip(local_md_dir, archive_zip_path) | |
if zip_archive_success == 0: | |
logger.info("์์ถ ์ฑ๊ณต") | |
else: | |
logger.error("์์ถ ์คํจ") | |
time.sleep(0.5) | |
progress(70, "๋งํฌ๋ค์ด ์ฝ๋ ์ค...") | |
md_path = os.path.join(local_md_dir, file_name + ".md") | |
with open(md_path, 'r', encoding='utf-8') as f: | |
txt_content = f.read() | |
time.sleep(0.5) | |
progress(90, "์ด๋ฏธ์ง base64 ๋ณํ ์ค...") | |
md_content = replace_image_with_base64(txt_content, local_md_dir) | |
time.sleep(0.5) | |
progress(100, "๋ณํ ์๋ฃ!") | |
return md_content | |
def init_model(): | |
""" | |
magic-pdf ๋ชจ๋ธ ์ด๊ธฐํ | |
""" | |
from magic_pdf.model.doc_analyze_by_custom_model import ModelSingleton | |
try: | |
model_manager = ModelSingleton() | |
txt_model = model_manager.get_model(False, False) | |
logger.info("txt_model init final") | |
ocr_model = model_manager.get_model(True, False) | |
logger.info("ocr_model init final") | |
return 0 | |
except Exception as e: | |
logger.exception(e) | |
return -1 | |
model_init = init_model() | |
logger.info(f"model_init: {model_init}") | |
############################### | |
# ์ธ์ด ๋ชฉ๋ก | |
############################### | |
latin_lang = [ | |
'af','az','bs','cs','cy','da','de','es','et','fr','ga','hr','hu','id','is','it','ku', | |
'la','lt','lv','mi','ms','mt','nl','no','oc','pi','pl','pt','ro','rs_latin','sk','sl', | |
'sq','sv','sw','tl','tr','uz','vi','french','german' | |
] | |
arabic_lang = ['ar','fa','ug','ur'] | |
cyrillic_lang = ['ru','rs_cyrillic','be','bg','uk','mn','abq','ady','kbd','ava','dar','inh','che','lbe','lez','tab'] | |
devanagari_lang = ['hi','mr','ne','bh','mai','ang','bho','mah','sck','new','gom','sa','bgc'] | |
other_lang = ['ch','en','korean','japan','chinese_cht','ta','te','ka'] | |
all_lang = ['', 'auto'] | |
all_lang.extend([*other_lang, *latin_lang, *arabic_lang, *cyrillic_lang, *devanagari_lang]) | |
############################### | |
# (1) PDF Chat ์ฉ LLM ๊ด๋ จ | |
############################### | |
import google.generativeai as genai | |
from gradio import ChatMessage | |
from typing import Iterator | |
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY") | |
genai.configure(api_key=GEMINI_API_KEY) | |
model = genai.GenerativeModel("gemini-2.0-flash-thinking-exp-1219") | |
def format_chat_history(messages: list) -> list: | |
""" | |
Gemini๊ฐ ์ดํดํ ์ ์๋ (role, parts[]) ํ์์ผ๋ก ๋ณํ | |
""" | |
formatted_history = [] | |
for message in messages: | |
if not (message.role == "assistant" and hasattr(message, "metadata")): | |
formatted_history.append({ | |
"role": "user" if message.role == "user" else "assistant", | |
"parts": [message.content] | |
}) | |
return formatted_history | |
def convert_chat_messages_to_gradio_format(messages): | |
""" | |
ChatMessage list -> [ (์ ์ ๋ฐํ, ๋ด์๋ต), (...), ... ] | |
""" | |
gradio_chat = [] | |
user_text, assistant_text = None, None | |
for msg in messages: | |
if msg.role == "user": | |
if user_text is not None or assistant_text is not None: | |
gradio_chat.append((user_text or "", assistant_text or "")) | |
user_text = msg.content | |
assistant_text = None | |
else: | |
if user_text is None: | |
user_text = "" | |
if assistant_text is None: | |
assistant_text = msg.content | |
else: | |
assistant_text += msg.content | |
if user_text is not None or assistant_text is not None: | |
gradio_chat.append((user_text or "", assistant_text or "")) | |
return gradio_chat | |
def stream_gemini_response(user_message: str, messages: list) -> Iterator[list]: | |
""" | |
Gemini ์๋ต ์คํธ๋ฆฌ๋ฐ | |
(user_message๊ฐ ๊ณต๋ฐฑ์ด๋ฉด ๊ธฐ๋ณธ ๋ฌธ๊ตฌ๋ก ๋์ฒด) | |
""" | |
if not user_message.strip(): | |
user_message = "...(No content from user)..." | |
try: | |
print(f"\n=== [Gemini] New Request ===\nUser message: '{user_message}'") | |
chat_history = format_chat_history(messages) | |
chat = model.start_chat(history=chat_history) | |
response = chat.send_message(user_message, stream=True) | |
thought_buffer = "" | |
response_buffer = "" | |
thinking_complete = False | |
# "Thinking" ์ญํ | |
messages.append( | |
ChatMessage( | |
role="assistant", | |
content="", | |
metadata={"title": "โ๏ธ Thinking: *The thoughts produced by the model are experimental"} | |
) | |
) | |
yield convert_chat_messages_to_gradio_format(messages) | |
for chunk in response: | |
parts = chunk.candidates[0].content.parts | |
current_chunk = parts[0].text | |
# ๋ง์ฝ parts ๊ฐ 2๊ฐ๋ผ๋ฉด, parts[0]๋ thinking, parts[1]์ ์ต์ข ๋ต๋ณ | |
if len(parts) == 2 and not thinking_complete: | |
thought_buffer += current_chunk | |
messages[-1] = ChatMessage( | |
role="assistant", | |
content=thought_buffer, | |
metadata={"title": "โ๏ธ Thinking: *The thoughts produced by the model are experimental"} | |
) | |
yield convert_chat_messages_to_gradio_format(messages) | |
response_buffer = parts[1].text | |
messages.append(ChatMessage(role="assistant", content=response_buffer)) | |
thinking_complete = True | |
elif thinking_complete: | |
# ์ด๋ฏธ ์ต์ข ๋ต๋ณ ์ค | |
response_buffer += current_chunk | |
messages[-1] = ChatMessage(role="assistant", content=response_buffer) | |
else: | |
# ์์ง thinking ์ค | |
thought_buffer += current_chunk | |
messages[-1] = ChatMessage( | |
role="assistant", | |
content=thought_buffer, | |
metadata={"title": "โ๏ธ Thinking: *The thoughts produced by the model are experimental"} | |
) | |
yield convert_chat_messages_to_gradio_format(messages) | |
print(f"\n=== [Gemini] Final Response ===\n{response_buffer}") | |
except Exception as e: | |
print(f"\n=== [Gemini] Error ===\n{str(e)}") | |
messages.append(ChatMessage(role="assistant", content=f"I encountered an error: {str(e)}")) | |
yield convert_chat_messages_to_gradio_format(messages) | |
def user_message(msg: str, history: list, doc_text: str) -> tuple[str, list]: | |
""" | |
doc_text(๋งํฌ๋ค์ด) ์ฌ์ฉํด ์ง๋ฌธ ์๋ ๋ณํ | |
""" | |
if doc_text.strip(): | |
user_query = f"๋ค์ ๋ฌธ์๋ฅผ ์ฐธ๊ณ ํ์ฌ ๋ต๋ณ:\n\n{doc_text}\n\n์ง๋ฌธ: {msg}" | |
else: | |
user_query = msg | |
history.append(ChatMessage(role="user", content=user_query)) | |
return "", history | |
def reset_states(_): | |
""" | |
์ ํ์ผ ์ ๋ก๋ ์ | |
- chat_history -> ๋น ๋ฆฌ์คํธ | |
- md_state -> ๋น ๋ฌธ์์ด | |
- chatbot -> ๋น list of tuples | |
""" | |
return [], "", [] | |
############################### | |
# (2) OCR FLEX ์ ์ฉ (์ค๋ํซ) | |
############################### | |
# ๋ณ๋์ LaTeX ์ค์ | |
latex_delimiters = [ | |
{"left": "$$", "right": "$$", "display": True}, | |
{"left": '$', "right": '$', "display": False} | |
] | |
def to_markdown_ocr_flex(file_path, end_pages, is_ocr, layout_mode, formula_enable, table_enable, language): | |
""" | |
์ค๋ํซ์์ ์ฌ์ฉ: | |
์ ๋ก๋๋ PDF/์ด๋ฏธ์ง -> PDF ๋ณํ -> ๋งํฌ๋ค์ด ๋ณํ | |
(๋งํฌ๋ค์ด ๋ ๋๋ง / ๋งํฌ๋ค์ด ํ ์คํธ / ์์ถํ์ผ / PDF๋ฏธ๋ฆฌ๋ณด๊ธฐ) ๋ฐํ | |
""" | |
file_path = to_pdf(file_path) | |
if end_pages > 20: | |
end_pages = 20 | |
local_md_dir, file_name = parse_pdf( | |
file_path, './output', end_pages - 1, is_ocr, | |
layout_mode, formula_enable, table_enable, language | |
) | |
archive_zip_path = os.path.join("./output", compute_sha256(local_md_dir) + ".zip") | |
zip_archive_success = compress_directory_to_zip(local_md_dir, archive_zip_path) | |
if zip_archive_success == 0: | |
logger.info("์์ถ ์ฑ๊ณต") | |
else: | |
logger.error("์์ถ ์คํจ") | |
md_path = os.path.join(local_md_dir, file_name + ".md") | |
with open(md_path, 'r', encoding='utf-8') as f: | |
txt_content = f.read() | |
md_content = replace_image_with_base64(txt_content, local_md_dir) | |
new_pdf_path = os.path.join(local_md_dir, file_name + "_layout.pdf") | |
return md_content, txt_content, archive_zip_path, new_pdf_path | |
############################### | |
# UI ํตํฉ | |
############################### | |
if __name__ == "__main__": | |
with gr.Blocks(title="VisionOCR", css=create_css()) as demo: | |
# ํญ ์์ญ | |
with gr.Tabs(): | |
######################################################### | |
# Tab (1) : PDF -> Markdown ๋ณํ + Chat | |
######################################################### | |
with gr.Tab("PDF Chat with LLM"): | |
gr.HTML(""" | |
<div class="title-area"> | |
<h1>VisionOCR</h1> | |
<p>PDF/์ด๋ฏธ์ง -> ํ ์คํธ(๋งํฌ๋ค์ด) ๋ณํ ํ, ์ถ LLM๊ณผ ๋ํ</p> | |
</div> | |
""") | |
md_state = gr.State("") # ๋ณํ๋ ๋งํฌ๋ค์ด ํ ์คํธ | |
chat_history = gr.State([]) # ChatMessage ๋ฆฌ์คํธ | |
# ์ ๋ก๋ & ๋ณํ | |
with gr.Row(): | |
file = gr.File(label="PDF/์ด๋ฏธ์ง ์ ๋ก๋", file_types=[".pdf", ".png", ".jpeg", ".jpg"], interactive=True) | |
convert_btn = gr.Button("๋ณํํ๊ธฐ") | |
chatbot = gr.Chatbot(height=600) | |
# ์ ํ์ผ ์ ๋ก๋ ์: ์ด์ ๋ํ/๋งํฌ๋ค์ด/์ฑ๋ด ์ด๊ธฐํ | |
file.change( | |
fn=reset_states, | |
inputs=file, | |
outputs=[chat_history, md_state, chatbot] | |
) | |
# ์จ๊น ์์๋ค | |
max_pages = gr.Slider(1, 20, 10, visible=False, elem_classes="invisible") | |
layout_mode = gr.Dropdown(["layoutlmv3","doclayout_yolo"], value="doclayout_yolo", visible=False, elem_classes="invisible") | |
language = gr.Dropdown(all_lang, value='auto', visible=False, elem_classes="invisible") | |
formula_enable = gr.Checkbox(value=True, visible=False, elem_classes="invisible") | |
is_ocr = gr.Checkbox(value=False, visible=False, elem_classes="invisible") | |
table_enable = gr.Checkbox(value=True, visible=False, elem_classes="invisible") | |
convert_btn.click( | |
fn=to_markdown, | |
inputs=[file, max_pages, is_ocr, layout_mode, formula_enable, table_enable, language], | |
outputs=md_state, | |
show_progress=True | |
) | |
# Gemini Chat | |
gr.Markdown("## ์ถ๋ก LLM๊ณผ ๋ํ") | |
with gr.Row(): | |
chat_input = gr.Textbox(lines=1, placeholder="์ง๋ฌธ์ ์ ๋ ฅํ์ธ์...") | |
clear_btn = gr.Button("๋ํ ์ด๊ธฐํ") | |
chat_input.submit( | |
fn=user_message, | |
inputs=[chat_input, chat_history, md_state], | |
outputs=[chat_input, chat_history] | |
).then( | |
fn=stream_gemini_response, | |
inputs=[chat_input, chat_history], | |
outputs=chatbot | |
) | |
def clear_all(): | |
return [], "", [] | |
clear_btn.click( | |
fn=clear_all, | |
inputs=[], | |
outputs=[chat_history, md_state, chatbot] | |
) | |
######################################################### | |
# Tab (2) : OCR FLEX (์ค๋ํซ ์ฝ๋) | |
######################################################### | |
with gr.Tab("OCR FLEX"): | |
gr.HTML(""" | |
<div class="title-area"> | |
<h1>OCR FLEX</h1> | |
<p>PDF์ ์ด๋ฏธ์ง์์ ํ ์คํธ๋ฅผ ๋น ๋ฅด๊ณ ์ ํํ๊ฒ ์ถ์ถํ์ธ์</p> | |
</div> | |
""") | |
with gr.Row(): | |
# ์ผ์ชฝ ํจ๋ | |
with gr.Column(variant='panel', scale=5): | |
file_ocr = gr.File( | |
label="PDF ๋๋ ์ด๋ฏธ์ง ํ์ผ์ ์ ๋ก๋ํ์ธ์", | |
file_types=[".pdf", ".png", ".jpeg", ".jpg"] | |
) | |
max_pages_ocr = gr.Slider( | |
1, 20, 10, | |
step=1, | |
label='์ต๋ ๋ณํ ํ์ด์ง ์' | |
) | |
with gr.Row(): | |
layout_mode_ocr = gr.Dropdown( | |
["layoutlmv3", "doclayout_yolo"], | |
label="๋ ์ด์์ ๋ชจ๋ธ", | |
value="doclayout_yolo" | |
) | |
language_ocr = gr.Dropdown( | |
all_lang, | |
label="์ธ์ด", | |
value='auto' | |
) | |
with gr.Row(): | |
formula_enable_ocr = gr.Checkbox( | |
label="์์ ์ธ์ ํ์ฑํ", | |
value=True | |
) | |
is_ocr_ocr = gr.Checkbox( | |
label="OCR ๊ฐ์ ํ์ฑํ", | |
value=False | |
) | |
table_enable_ocr = gr.Checkbox( | |
label="ํ ์ธ์ ํ์ฑํ(ํ ์คํธ)", | |
value=True | |
) | |
with gr.Row(): | |
change_bu_ocr = gr.Button("๋ณํ") | |
# โ ClearButton ์์ โ | |
# ์ฒซ ๋ฒ์งธ ์ธ์ -> clearํ ๋์(์ปดํฌ๋ํธ), | |
# ๋ฒํผ์ ํ์๋ ํ ์คํธ๋ value="์ด๊ธฐํ" | |
clear_bu_ocr = gr.ClearButton( | |
components=[file_ocr, max_pages_ocr, layout_mode_ocr, language_ocr, | |
formula_enable_ocr, is_ocr_ocr, table_enable_ocr], | |
value="์ด๊ธฐํ" | |
) | |
pdf_show_ocr = PDF( | |
label='PDF ๋ฏธ๋ฆฌ๋ณด๊ธฐ', | |
interactive=False, | |
visible=True, | |
height=800 | |
) | |
# ์์ ํด๋๊ฐ ์๋ค๋ฉด ์ฌ์ฉ (์ค์ ์คํํ๊ฒฝ์ ๋ฐ๋ผ ์ฃผ์) | |
with gr.Accordion("์์ :", open=False): | |
example_root = ( | |
os.path.join(os.path.dirname(__file__), "examples") | |
if "__file__" in globals() else "./examples" | |
) | |
if os.path.exists(example_root): | |
gr.Examples( | |
examples=[ | |
os.path.join(example_root, _) for _ in os.listdir(example_root) | |
if _.endswith("pdf") | |
], | |
inputs=file_ocr | |
) | |
else: | |
gr.Markdown("์์ ํด๋๊ฐ ์กด์ฌํ์ง ์์ต๋๋ค.") | |
# ์ค๋ฅธ์ชฝ ํจ๋ | |
with gr.Column(variant='panel', scale=5): | |
output_file_ocr = gr.File( | |
label="๋ณํ ๊ฒฐ๊ณผ", | |
interactive=False | |
) | |
with gr.Tabs(): | |
with gr.Tab("๋งํฌ๋ค์ด ๋ ๋๋ง"): | |
md_ocr = gr.Markdown( | |
label="๋งํฌ๋ค์ด ๋ ๋๋ง", | |
height=1100, | |
show_copy_button=True, | |
latex_delimiters=latex_delimiters, | |
line_breaks=True | |
) | |
with gr.Tab("๋งํฌ๋ค์ด ํ ์คํธ"): | |
md_text_ocr = gr.TextArea( | |
lines=45, | |
show_copy_button=True | |
) | |
# ์ด๋ฒคํธ ํธ๋ค๋ฌ (OCR FLEX) | |
file_ocr.change( | |
fn=to_pdf, | |
inputs=file_ocr, | |
outputs=pdf_show_ocr | |
) | |
def run_ocr_flex(*args): | |
return to_markdown_ocr_flex(*args) | |
change_bu_ocr.click( | |
fn=run_ocr_flex, | |
inputs=[ | |
file_ocr, | |
max_pages_ocr, | |
is_ocr_ocr, | |
layout_mode_ocr, | |
formula_enable_ocr, | |
table_enable_ocr, | |
language_ocr | |
], | |
outputs=[ | |
md_ocr, | |
md_text_ocr, | |
output_file_ocr, | |
pdf_show_ocr | |
] | |
) | |
# ์ ์ฒด ์ฑ ์คํ | |
demo.launch(server_name="0.0.0.0", server_port=7860, debug=True, ssr_mode=True) | |