Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
| import copy as cp | |
| import json | |
| from collections import defaultdict | |
| from urllib.request import urlopen | |
| import gradio as gr | |
| import numpy as np | |
| import pandas as pd | |
| from meta_data import DEFAULT_BENCH, META_FIELDS, URL | |
| def listinstr(lst, s): | |
| assert isinstance(lst, list) | |
| for item in lst: | |
| if item in s: | |
| return True | |
| return False | |
| def load_results(): | |
| data = json.loads(urlopen(URL).read()) | |
| return data | |
| def nth_large(val, vals): | |
| return sum([1 for v in vals if v > val]) + 1 | |
| def format_timestamp(timestamp): | |
| date = timestamp[:2] + '.' + timestamp[2:4] + '.' + timestamp[4:6] | |
| time = timestamp[6:8] + ':' + timestamp[8:10] + ':' + timestamp[10:12] | |
| return date + ' ' + time | |
| def model_size_flag(sz, FIELDS): | |
| if pd.isna(sz) and 'Unknown' in FIELDS: | |
| return True | |
| if pd.isna(sz): | |
| return False | |
| if '<4B' in FIELDS and sz < 4: | |
| return True | |
| if '4B-10B' in FIELDS and sz >= 4 and sz < 10: | |
| return True | |
| if '10B-20B' in FIELDS and sz >= 10 and sz < 20: | |
| return True | |
| if '20B-40B' in FIELDS and sz >= 20 and sz < 40: | |
| return True | |
| if '>40B' in FIELDS and sz >= 40: | |
| return True | |
| return False | |
| def model_type_flag(line, FIELDS): | |
| if 'OpenSource' in FIELDS and line['OpenSource'] == 'Yes': | |
| return True | |
| if 'API' in FIELDS and line['OpenSource'] == 'No' and line['Verified'] == 'Yes': | |
| return True | |
| if 'Proprietary' in FIELDS and line['OpenSource'] == 'No' and line['Verified'] == 'No': | |
| return True | |
| return False | |
| def BUILD_L1_DF(results, fields): | |
| check_box = {} | |
| check_box['essential'] = ['Method', 'Param (B)', 'Language Model', 'Vision Model'] | |
| # revise there to set default dataset | |
| check_box['required'] = ['Avg Score', 'Avg Rank'] + DEFAULT_BENCH | |
| check_box['avg'] = ['Avg Score', 'Avg Rank'] | |
| check_box['all'] = check_box['avg'] + fields | |
| type_map = defaultdict(lambda: 'number') | |
| type_map['Method'] = 'html' | |
| type_map['Language Model'] = type_map['Vision Model'] = 'html' | |
| type_map['OpenSource'] = type_map['Verified'] = 'str' | |
| check_box['type_map'] = type_map | |
| df = generate_table(results, fields) | |
| return df, check_box | |
| def BUILD_L2_DF(results, dataset): | |
| res = defaultdict(list) | |
| sub = [v for v in results.values() if dataset in v] | |
| assert len(sub) | |
| fields = list(sub[0][dataset].keys()) | |
| non_overall_fields = [x for x in fields if 'Overall' not in x] | |
| overall_fields = [x for x in fields if 'Overall' in x] | |
| if dataset == 'MME': | |
| non_overall_fields = [x for x in non_overall_fields if not listinstr(['Perception', 'Cognition'], x)] | |
| overall_fields = overall_fields + ['Perception', 'Cognition'] | |
| if dataset == 'OCRBench': | |
| non_overall_fields = [x for x in non_overall_fields if not listinstr(['Final Score'], x)] | |
| overall_fields = ['Final Score'] | |
| for m in results: | |
| item = results[m] | |
| if dataset not in item: | |
| continue | |
| meta = item['META'] | |
| for k in META_FIELDS: | |
| if k == 'Param (B)': | |
| param = meta['Parameters'] | |
| res[k].append(float(param.replace('B', '')) if param != '' else None) | |
| elif k == 'Method': | |
| name, url = meta['Method'] | |
| res[k].append(f'<a href="{url}">{name}</a>') | |
| else: | |
| res[k].append(meta[k]) | |
| fields = [x for x in fields] | |
| for d in non_overall_fields: | |
| res[d].append(item[dataset][d]) | |
| for d in overall_fields: | |
| res[d].append(item[dataset][d]) | |
| df = pd.DataFrame(res) | |
| all_fields = overall_fields + non_overall_fields | |
| # Use the first 5 non-overall fields as required fields | |
| required_fields = overall_fields if len(overall_fields) else non_overall_fields[:5] | |
| if dataset == 'OCRBench': | |
| df = df.sort_values('Final Score') | |
| elif dataset == 'COCO_VAL': | |
| df = df.sort_values('CIDEr') | |
| else: | |
| df = df.sort_values('Overall') | |
| df = df.iloc[::-1] | |
| check_box = {} | |
| check_box['essential'] = ['Method', 'Param (B)', 'Language Model', 'Vision Model'] | |
| check_box['required'] = required_fields | |
| check_box['all'] = all_fields | |
| type_map = defaultdict(lambda: 'number') | |
| type_map['Method'] = 'html' | |
| type_map['Language Model'] = type_map['Vision Model'] = 'html' | |
| type_map['OpenSource'] = type_map['Verified'] = 'str' | |
| check_box['type_map'] = type_map | |
| return df, check_box | |
| def generate_table(results, fields): | |
| def get_mmbench_v11(item): | |
| assert 'MMBench_TEST_CN_V11' in item and 'MMBench_TEST_EN_V11' in item | |
| val = (item['MMBench_TEST_CN_V11']['Overall'] + item['MMBench_TEST_EN_V11']['Overall']) / 2 | |
| val = float(f'{val:.1f}') | |
| return val | |
| res = defaultdict(list) | |
| for i, m in enumerate(results): | |
| item = results[m] | |
| meta = item['META'] | |
| for k in META_FIELDS: | |
| if k == 'Param (B)': | |
| param = meta['Parameters'] | |
| res[k].append(float(param.replace('B', '')) if param != '' else None) | |
| elif k == 'Method': | |
| name, url = meta['Method'] | |
| res[k].append(f'<a href="{url}">{name}</a>') | |
| res['name'].append(name) | |
| else: | |
| res[k].append(meta[k]) | |
| scores, ranks = [], [] | |
| for d in fields: | |
| key_name = 'Overall' if d != 'OCRBench' else 'Final Score' | |
| # Every Model should have MMBench_V11 results | |
| if d == 'MMBench_V11': | |
| val = get_mmbench_v11(item) | |
| res[d].append(val) | |
| scores.append(val) | |
| ranks.append(nth_large(val, [get_mmbench_v11(x) for x in results.values()])) | |
| elif d in item: | |
| res[d].append(item[d][key_name]) | |
| if d == 'MME': | |
| scores.append(item[d][key_name] / 28) | |
| elif d == 'OCRBench': | |
| scores.append(item[d][key_name] / 10) | |
| else: | |
| scores.append(item[d][key_name]) | |
| ranks.append(nth_large(item[d][key_name], [x[d][key_name] for x in results.values() if d in x])) | |
| else: | |
| res[d].append(None) | |
| scores.append(None) | |
| ranks.append(None) | |
| res['Avg Score'].append(round(np.mean(scores), 1) if None not in scores else None) | |
| res['Avg Rank'].append(round(np.mean(ranks), 2) if None not in ranks else None) | |
| df = pd.DataFrame(res) | |
| valid, missing = df[~pd.isna(df['Avg Score'])], df[pd.isna(df['Avg Score'])] | |
| valid = valid.sort_values('Avg Score') | |
| valid = valid.iloc[::-1] | |
| if len(fields): | |
| missing = missing.sort_values('MMBench_V11' if 'MMBench_V11' in fields else fields[0]) | |
| missing = missing.iloc[::-1] | |
| df = pd.concat([valid, missing]) | |
| return df | |