hmacdope commited on
Commit
6024b7c
·
1 Parent(s): d4af07e

initial app demo

Browse files
Files changed (1) hide show
  1. app.py +69 -0
app.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from gradio_leaderboard import Leaderboard, ColumnFilter
3
+ import pandas as pd
4
+
5
+ # dataset = load_dataset("your_dataset_name")
6
+
7
+
8
+ from datetime import datetime
9
+
10
+
11
+
12
+ def gradio_interface():
13
+ with gr.Blocks(title="OpenADMET ADMET Challenge") as demo:
14
+
15
+
16
+
17
+ # --- Welcome markdown message ---
18
+ welcome_md = """
19
+ # 🧪 OpenADMET + XXX
20
+ ## Computational Blind Challenge in ADMET
21
+
22
+ Welcome to the **XXX**, hosted by **OpenADMET** in collaboration with **XXX**.
23
+
24
+ Your task is to develop and submit predictive models for key ADMET properties on a blinded test set of real world drug discovery data.
25
+
26
+
27
+ 📅 **Timeline**:
28
+ - TBD
29
+
30
+ ---
31
+
32
+ """
33
+
34
+ # --- Gradio Interface ---
35
+ with gr.Tabs(elem_classes="tab-buttons"):
36
+
37
+ with gr.TabItem("Welcome"):
38
+ gr.Markdown(welcome_md)
39
+
40
+ with gr.TabItem("Submit Predictions"):
41
+ gr.Markdown("Upload your prediction files here.")
42
+ filename = gr.State(value=None)
43
+ eval_state = gr.State(value=None)
44
+ user_state = gr.State(value=None)
45
+
46
+ with gr.TabItem("Leaderboard"):
47
+ gr.Markdown("View the leaderboard here.")
48
+ df = pd.DataFrame({
49
+ "user": ["User1", "User2", "User3"],
50
+ "Model": ["A", "B", "C"],
51
+ "R2": [0.94, 0.92, 0.89],
52
+ "Spearman R": [0.93, 0.91, 0.88],
53
+ })
54
+ Leaderboard(
55
+ value=df,
56
+ # Optionally configure columns:
57
+ select_columns=["Model", "R2", "Spearman R"],
58
+ # Additional options: search_columns, filter_columns, hide_columns, etc.
59
+ search_columns=["Model", "user"],
60
+ )
61
+
62
+
63
+ with gr.TabItem("About"):
64
+ gr.Markdown("Learn more about the challenge and the organizers.")
65
+
66
+ return demo
67
+
68
+ if __name__ == "__main__":
69
+ gradio_interface().launch()