Spaces:
Restarting
Restarting
File size: 10,702 Bytes
6024b7c b77cb84 6024b7c b77cb84 6024b7c b77cb84 6024b7c b77cb84 6024b7c b77cb84 6024b7c b77cb84 6024b7c b77cb84 6024b7c b77cb84 6024b7c b77cb84 6024b7c b77cb84 6024b7c b77cb84 6024b7c b77cb84 6024b7c b77cb84 6024b7c b77cb84 6024b7c b77cb84 6024b7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter
import pandas as pd
from about import submissions_repo, results_repo
from evaluate import submit_data, evaluate_data
from datasets import load_dataset
from datetime import datetime
from about import ENDPOINTS
def get_leaderboard(dset):
dset = load_dataset(results_repo, split='train', download_mode="force_redownload")
full_df = pd.DataFrame(dset)
to_show = full_df.copy(deep=True)
to_show = to_show[to_show['user'] != 'test']
# The columns to display publicly
to_show = to_show[["user", "Model", "MAE", "R2", "Spearman R", "Kendall's Tau"]]
return to_show
def gradio_interface():
with gr.Blocks(title="OpenADMET ADMET Challenge") as demo:
gr.Markdown("## Welcome to the OpenADMET + XXX Blind Challenge!")
# --- Welcome markdown message ---
welcome_md = """
# ๐ OpenADMET + XXX
## Computational Blind Challenge in ADMET
Welcome to the **XXX**, hosted by **OpenADMET** in collaboration with **XXX**.
This is a community-driven initiative to benchmark predictive models for ADMET properties in drug discovery.
Your task is to develop and submit predictive models for key ADMET properties on a blinded test set of real world drug discovery data.
## ADMET Properties:
*Absorption*, *Distribution*, *Metabolism*, *Excretion*, *Toxicology*--or **ADMET**--endpoints sit in the middle of the assay cascade and can make or break preclinical candidate molecules.
For this blind challenge we selected several crucial endpoints for the community to predict:
- LogD
- Kinetic Solubility **KSOL**: uM
- Mouse Liver Microsomal (**MLM**) *CLint*: mL/min/kg
- Human Liver Microsomal (**HLM**) *Clint*: mL/min/kg
- Caco-2 Efflux Ratio
- Caco-2 Papp A>B (10^-6 cm/s)
- Mouse Plasma Protein Binding (**MPPB**): % Unbound
- Mouse Brain Protein Binding (**MBPB**): % Unbound
- Rat Liver Microsomal (**RLM**) *Clint*: mL/min/kg
- Mouse Gastrocnemius Muscle Binding (**MGMB**): % Unbound
## โ
How to Participate
1. **Register**: Create an account with Hugging Face.
2. **Download the Public Dataset**: Clone the XXX dataset [link]
3. **Train Your Model**: Use the provided training data for each ADMET property of your choice.
4. **Submit Predictions**: Follow the instructions in the *Submit* tab to upload your predictions.
5. Join the discussion on the [Challenge Discord](link)!
## ๐ Data:
The training set will have the following variables:
| Column | Unit | data type | Description |
|:-----------------------------|-----------|-----------|:-------------|
| Molecule Name | | str | Identifier for the molecule |
| Smiles | | str | Text representation of the 2D molecular structure |
| LogD | | float | LogD calculation |
| KSol | uM | float | Kinetic Solubility |
| MLM CLint | mL/min/kg | float | Mouse Liver Microsomal |
| HLM CLint | mL/min/kg | float | Human Liver Microsomal |
| Caco-2 Permeability Efflux | | float | Caco-2 Permeability Efflux |
| Caco-2 Permeability Papp A>B | 10^-6 cm/s| float | Caco-2 Permeability Papp A>B |
| MPPB | % Unbound | float | Mouse Plasma Protein Binding |
| MBPB | % Unbound | float | Mouse Brain Protein Binding |
| RLM CLint | mL/min/kg | float | Rat Liver Microsomal Stability |
| MGMB. | % Unbound | float | Mouse Gastrocnemius Muscle Binding |
At test time, we will only provide the Molecule Name and Smiles. Make sure your submission file has the same columns!
## ๐ Evaluation
The challenge will be judged based on the judging criteria outlined here.
- TBD
๐
**Timeline**:
- TBD
---
"""
# --- Gradio Interface ---
with gr.Tabs(elem_classes="tab-buttons"):
with gr.TabItem("๐About"):
gr.Markdown(welcome_md)
with gr.TabItem("๐Leaderboard"):
gr.Markdown("View the leaderboard for each ADMET endpoint by selecting the appropiate tab.")
df1 = pd.DataFrame({
"user": ["User1", "User2", "User3"],
"MAE": [0.1, 0.2, 0.15],
"R2": [0.94, 0.92, 0.89],
"Spearman R": [0.93, 0.91, 0.88],
"Kendall's Tau": [0.90, 0.89, 0.85],
})
df2 = pd.DataFrame({
"user": ["User1", "User2", "User3"],
"MAE": [0.2, 0.3, 0.15],
"R2": [0.2, 0.72, 0.89],
"Spearman R": [0.91, 0.71, 0.68],
"Kendall's Tau": [0.90, 0.4, 0.7],
})
# Make separate leaderboards in separate tabs
mock_data = [df1, df1, df2, df1, df2, df1, df1, df2, df1, df2]
for i, endpoint in enumerate(ENDPOINTS):
df = mock_data[i]
with gr.TabItem(endpoint):
Leaderboard(
value=df,
datatype=['str', 'number', 'number', 'number', 'number'],
select_columns=["user", "MAE", "R2", "Spearman R", "Kendall's Tau"],
search_columns=["user"],
every=60,
)
with gr.TabItem("Submit Predictions"):
gr.Markdown(
"""
# ADME Endpoints Submission
Upload your prediction files here as a csv file.
"""
)
filename = gr.State(value=None)
eval_state = gr.State(value=None)
user_state = gr.State(value=None)
with gr.Row():
with gr.Column():
gr.Markdown(
"""
## Participant Information
To participate, you must enter a Hugging Face username, or alias, which will be displayed on the leaderboard.
Other information is optional but helps us track participation.
If you wish to be included in Challenge discussions, please provide your Discord username and email.
If you wish to be included in a future publication with the Challenge results, please provide your name and affiliation.
"""
)
# endpoint_type = gr.CheckboxGroup(
## ENDPOINTS,
# label="ADME Endpoints",
# info="Select the ADME endpoints you are submitting predictions for."),
# Could also allow a display name in case HF username is not necessary?
username_input = gr.Textbox(
label="Username",
placeholder="Enter your Hugging Face username",
info="This will be displayed on the leaderboard."
)
with gr.Column():
# Info to track participant, that will not be displayed publicly
participant_name = gr.Textbox(
label="Participant Name",
placeholder="Enter your name (optional)",
info="This will not be displayed on the leaderboard but will be used for tracking participation."
)
discord_username= gr.Textbox(
label="Discord Username",
placeholder="Enter your Discord username (optional)",
info="Enter the username you will use for the Discord channel (if you are planning to engage in the discussion)."
)
email = gr.Textbox(
label="Email",
placeholder="Enter your email (optional)",
)
affiliation = gr.Textbox(
label="Affiliation",
placeholder="Enter your school/company affiliation (optional)",
)
with gr.Row():
with gr.Column():
gr.Markdown(
"""
## Submission Instructions
Upload a single CSV file containing your predictions for all ligands in the test set.
You can download the ligand test set here (lik/to/download/smiles/csv).
"""
)
with gr.Column():
predictions_file = gr.File(label="Single file with ADME predictions (.csv)",
file_types=[".csv"],
file_count="single",)
username_input.change(
fn=lambda x: x if x.strip() else None,
inputs=username_input,
outputs=user_state
)
submit_btn = gr.Button("Submit Predictions")
message = gr.Textbox(label="Status", lines=1, visible=False)
submit_btn.click(
submit_data,
inputs=[predictions_file, user_state, participant_name, discord_username, email, affiliation],
outputs=[message],
).success(
fn=lambda m: gr.update(value=m, visible=True),
inputs=[message],
outputs=[message],
).success(
fn=evaluate_data,
inputs=[filename],
outputs=[eval_state]
)
return demo
if __name__ == "__main__":
gradio_interface().launch() |