File size: 10,702 Bytes
6024b7c
 
 
 
b77cb84
 
6024b7c
b77cb84
6024b7c
b77cb84
 
6024b7c
b77cb84
 
 
 
 
 
 
6024b7c
b77cb84
6024b7c
 
 
 
b77cb84
6024b7c
 
 
b77cb84
6024b7c
 
b77cb84
 
6024b7c
 
 
b77cb84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6024b7c
 
 
 
 
 
 
 
 
 
 
b77cb84
6024b7c
 
b77cb84
 
 
6024b7c
b77cb84
6024b7c
 
b77cb84
6024b7c
b77cb84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6024b7c
b77cb84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6024b7c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter
import pandas as pd

from about import submissions_repo, results_repo
from evaluate import submit_data, evaluate_data

from datasets import load_dataset
from datetime import datetime
from about import ENDPOINTS


def get_leaderboard(dset):
    dset = load_dataset(results_repo, split='train', download_mode="force_redownload")
    full_df = pd.DataFrame(dset)
    to_show = full_df.copy(deep=True)
    to_show = to_show[to_show['user'] != 'test']
    # The columns to display publicly
    to_show = to_show[["user", "Model", "MAE", "R2", "Spearman R", "Kendall's Tau"]]

    return to_show

def gradio_interface():
    with gr.Blocks(title="OpenADMET ADMET Challenge") as demo:

        gr.Markdown("## Welcome to the OpenADMET + XXX Blind Challenge!")

        # --- Welcome markdown message ---
        welcome_md = """
        # ๐Ÿ’Š OpenADMET + XXX  
        ## Computational Blind Challenge in ADMET

        Welcome to the **XXX**, hosted by **OpenADMET** in collaboration with **XXX**. 
        This is a community-driven initiative to benchmark predictive models for ADMET properties in drug discovery.

        Your task is to develop and submit predictive models for key ADMET properties on a blinded test set of real world drug discovery data.

        ## ADMET Properties:
        *Absorption*, *Distribution*, *Metabolism*, *Excretion*, *Toxicology*--or **ADMET**--endpoints sit in the middle of the assay cascade and can make or break preclinical candidate molecules. 
        For this blind challenge we selected several crucial endpoints for the community to predict:
        - LogD
        - Kinetic Solubility **KSOL**: uM
        - Mouse Liver Microsomal (**MLM**) *CLint*: mL/min/kg
        - Human Liver Microsomal (**HLM**) *Clint*: mL/min/kg
        - Caco-2 Efflux Ratio
        - Caco-2 Papp A>B (10^-6 cm/s)
        - Mouse Plasma Protein Binding (**MPPB**): % Unbound
        - Mouse Brain Protein Binding (**MBPB**): % Unbound
        - Rat Liver Microsomal (**RLM**) *Clint*: mL/min/kg
        - Mouse Gastrocnemius Muscle Binding (**MGMB**): % Unbound

        ## โœ… How to Participate
        1. **Register**: Create an account with Hugging Face.
        2. **Download the Public Dataset**: Clone the XXX dataset [link]
        3. **Train Your Model**: Use the provided training data for each ADMET property of your choice.
        4. **Submit Predictions**: Follow the instructions in the *Submit* tab to upload your predictions.
        5. Join the discussion on the [Challenge Discord](link)!

        ## ๐Ÿ“Š Data:

        The training set will have the following variables:
        
        | Column                       |    Unit   | data type |  Description |
        |:-----------------------------|-----------|-----------|:-------------|
        | Molecule Name                |           |    str    | Identifier for the molecule |
        | Smiles                       |           |    str    | Text representation of the 2D molecular structure |
        | LogD                         |           |   float   | LogD calculation |
        | KSol                         |    uM     |   float   | Kinetic Solubility |
        | MLM CLint                    | mL/min/kg |   float   | Mouse Liver Microsomal |
        | HLM CLint                    | mL/min/kg |   float   | Human Liver Microsomal |
        | Caco-2 Permeability Efflux   |           |   float   | Caco-2 Permeability Efflux |
        | Caco-2 Permeability Papp A>B | 10^-6 cm/s|   float   | Caco-2 Permeability Papp A>B |
        | MPPB                         | % Unbound |   float   | Mouse Plasma Protein Binding |
        | MBPB                         | % Unbound |   float   | Mouse Brain Protein Binding |
        | RLM CLint                    | mL/min/kg |   float   | Rat Liver Microsomal Stability |
        | MGMB.                        | % Unbound |   float   | Mouse Gastrocnemius Muscle Binding |

        At test time, we will only provide the Molecule Name and Smiles. Make sure your submission file has the same columns!

        ## ๐Ÿ“ Evaluation
        The challenge will be judged based on the judging criteria outlined here.

        - TBD

        ๐Ÿ“… **Timeline**:  
        - TBD

        ---

        """

        # --- Gradio Interface ---
        with gr.Tabs(elem_classes="tab-buttons"):

            with gr.TabItem("๐Ÿ“About"):
                gr.Markdown(welcome_md)

            with gr.TabItem("๐Ÿš€Leaderboard"):
                gr.Markdown("View the leaderboard for each ADMET endpoint by selecting the appropiate tab.")
                df1 = pd.DataFrame({
                    "user": ["User1", "User2", "User3"],
                    "MAE": [0.1, 0.2, 0.15],
                    "R2": [0.94, 0.92, 0.89],
                    "Spearman R": [0.93, 0.91, 0.88],
                    "Kendall's Tau": [0.90, 0.89, 0.85],
                })
                df2 = pd.DataFrame({
                    "user": ["User1", "User2", "User3"],
                    "MAE": [0.2, 0.3, 0.15],
                    "R2": [0.2, 0.72, 0.89],
                    "Spearman R": [0.91, 0.71, 0.68],
                    "Kendall's Tau": [0.90, 0.4, 0.7],
                })
                # Make separate leaderboards in separate tabs
                mock_data = [df1, df1, df2, df1, df2, df1, df1, df2, df1, df2]               
                for i, endpoint in enumerate(ENDPOINTS):
                    df = mock_data[i]
                    with gr.TabItem(endpoint):
                        Leaderboard(
                            value=df,
                            datatype=['str', 'number', 'number', 'number', 'number'],
                            select_columns=["user", "MAE", "R2", "Spearman R", "Kendall's Tau"],
                            search_columns=["user"],
                            every=60,
                        )

            with gr.TabItem("Submit Predictions"):
                gr.Markdown(
                """
                # ADME Endpoints Submission
                Upload your prediction files here as a csv file.
                """
                )
                filename = gr.State(value=None) 
                eval_state = gr.State(value=None) 
                user_state = gr.State(value=None)
    
                with gr.Row():
                    
                    with gr.Column():
                        gr.Markdown(
                            """
                            ## Participant Information
                            To participate, you must enter a Hugging Face username, or alias, which will be displayed on the leaderboard.
                            Other information is optional but helps us track participation. 
                            If you wish to be included in Challenge discussions, please provide your Discord username and email. 
                            If you wish to be included in a future publication with the Challenge results, please provide your name and affiliation.
                            """
                            )
                    #    endpoint_type = gr.CheckboxGroup(
                    ##        ENDPOINTS, 
                    #        label="ADME Endpoints",
                    #        info="Select the ADME endpoints you are submitting predictions for."),
                        # Could also allow a display name in case HF username is not necessary?
                        username_input = gr.Textbox(
                            label="Username", 
                            placeholder="Enter your Hugging Face username",
                            info="This will be displayed on the leaderboard."
                        )
                    with gr.Column():
                        # Info to track participant, that will not be displayed publicly
                        participant_name = gr.Textbox(
                            label="Participant Name",
                            placeholder="Enter your name (optional)",
                            info="This will not be displayed on the leaderboard but will be used for tracking participation."
                        )
                        discord_username= gr.Textbox(
                            label="Discord Username",
                            placeholder="Enter your Discord username (optional)",
                            info="Enter the username you will use for the Discord channel (if you are planning to engage in the discussion)."
                        )
                        email = gr.Textbox(
                            label="Email",
                            placeholder="Enter your email (optional)",
                        )
                        affiliation = gr.Textbox(
                            label="Affiliation",
                            placeholder="Enter your school/company affiliation (optional)",
                        )

                with gr.Row():
                    with gr.Column():
                        gr.Markdown(
                            """
                            ## Submission Instructions
                            Upload a single CSV file containing your predictions for all ligands in the test set. 
                            You can download the ligand test set here (lik/to/download/smiles/csv).
                            """
                        )
                    with gr.Column():
                        predictions_file = gr.File(label="Single file with ADME predictions (.csv)",
                                                file_types=[".csv"],
                                                file_count="single",)

                username_input.change(
                    fn=lambda x: x if x.strip() else None,
                    inputs=username_input,
                    outputs=user_state
                )  

                submit_btn = gr.Button("Submit Predictions")
                message = gr.Textbox(label="Status", lines=1, visible=False)

                submit_btn.click(
                    submit_data,
                    inputs=[predictions_file, user_state, participant_name, discord_username, email, affiliation],
                    outputs=[message],
                ).success(
                    fn=lambda m: gr.update(value=m, visible=True),
                    inputs=[message],
                    outputs=[message],
                ).success(
                    fn=evaluate_data,
                    inputs=[filename],
                    outputs=[eval_state]
                )
    return demo

if __name__ == "__main__":
    gradio_interface().launch()