Spaces:
Runtime error
Runtime error
Quentin Gallouédec
commited on
Commit
·
76e0bcf
1
Parent(s):
4a5bd80
move eval to dedicated file
Browse files- app.py +3 -86
- src/evaluation.py +277 -0
app.py
CHANGED
|
@@ -1,40 +1,24 @@
|
|
| 1 |
-
import fnmatch
|
| 2 |
import glob
|
| 3 |
import json
|
| 4 |
-
import logging
|
| 5 |
import os
|
| 6 |
import pprint
|
| 7 |
|
| 8 |
import gradio as gr
|
| 9 |
-
import gymnasium as gym
|
| 10 |
-
import numpy as np
|
| 11 |
import pandas as pd
|
| 12 |
-
import torch
|
| 13 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 14 |
-
from huggingface_hub import
|
| 15 |
-
from huggingface_hub.utils._errors import EntryNotFoundError
|
| 16 |
|
| 17 |
from src.css_html_js import dark_mode_gradio_js
|
| 18 |
from src.envs import API, RESULTS_PATH, RESULTS_REPO, TOKEN
|
|
|
|
| 19 |
from src.logging import configure_root_logger, setup_logger
|
| 20 |
|
| 21 |
-
logging.getLogger("openai").setLevel(logging.WARNING)
|
| 22 |
-
logger = setup_logger(__name__)
|
| 23 |
-
|
| 24 |
configure_root_logger()
|
| 25 |
logger = setup_logger(__name__)
|
| 26 |
|
| 27 |
pp = pprint.PrettyPrinter(width=80)
|
| 28 |
|
| 29 |
|
| 30 |
-
ALL_ENV_IDS = [
|
| 31 |
-
"CartPole-v1",
|
| 32 |
-
"MountainCar-v0",
|
| 33 |
-
"Acrobot-v1",
|
| 34 |
-
"Hopper-v4",
|
| 35 |
-
]
|
| 36 |
-
|
| 37 |
-
|
| 38 |
def model_hyperlink(link, model_id):
|
| 39 |
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_id}</a>'
|
| 40 |
|
|
@@ -44,73 +28,6 @@ def make_clickable_model(model_id):
|
|
| 44 |
return model_hyperlink(link, model_id)
|
| 45 |
|
| 46 |
|
| 47 |
-
def pattern_match(patterns, source_list):
|
| 48 |
-
if isinstance(patterns, str):
|
| 49 |
-
patterns = [patterns]
|
| 50 |
-
|
| 51 |
-
env_ids = set()
|
| 52 |
-
for pattern in patterns:
|
| 53 |
-
for matching in fnmatch.filter(source_list, pattern):
|
| 54 |
-
env_ids.add(matching)
|
| 55 |
-
return sorted(list(env_ids))
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
def evaluate(model_id, revision):
|
| 59 |
-
tags = API.model_info(model_id, revision=revision).tags
|
| 60 |
-
|
| 61 |
-
# Extract the environment IDs from the tags (usually only one)
|
| 62 |
-
env_ids = pattern_match(tags, ALL_ENV_IDS)
|
| 63 |
-
logger.info(f"Selected environments: {env_ids}")
|
| 64 |
-
|
| 65 |
-
results = {}
|
| 66 |
-
|
| 67 |
-
# Check if the agent exists
|
| 68 |
-
try:
|
| 69 |
-
agent_path = hf_hub_download(repo_id=model_id, filename="agent.pt")
|
| 70 |
-
except EntryNotFoundError:
|
| 71 |
-
logger.error("Agent not found")
|
| 72 |
-
return None
|
| 73 |
-
|
| 74 |
-
# Check safety
|
| 75 |
-
security = next(iter(API.get_paths_info(model_id, "agent.pt", expand=True))).security
|
| 76 |
-
if security is None or "safe" not in security:
|
| 77 |
-
logger.error("Agent safety not available")
|
| 78 |
-
return None
|
| 79 |
-
elif not security["safe"]:
|
| 80 |
-
logger.error("Agent not safe")
|
| 81 |
-
return None
|
| 82 |
-
|
| 83 |
-
# Load the agent
|
| 84 |
-
try:
|
| 85 |
-
agent = torch.jit.load(agent_path)
|
| 86 |
-
except Exception as e:
|
| 87 |
-
logger.error(f"Error loading agent: {e}")
|
| 88 |
-
return None
|
| 89 |
-
|
| 90 |
-
# Evaluate the agent on the environments
|
| 91 |
-
for env_id in env_ids:
|
| 92 |
-
episodic_rewards = []
|
| 93 |
-
env = gym.make(env_id)
|
| 94 |
-
for _ in range(10):
|
| 95 |
-
episodic_reward = 0.0
|
| 96 |
-
observation, info = env.reset()
|
| 97 |
-
done = False
|
| 98 |
-
while not done:
|
| 99 |
-
torch_observation = torch.from_numpy(np.array([observation]))
|
| 100 |
-
action = agent(torch_observation).numpy()[0]
|
| 101 |
-
observation, reward, terminated, truncated, info = env.step(action)
|
| 102 |
-
done = terminated or truncated
|
| 103 |
-
episodic_reward += reward
|
| 104 |
-
|
| 105 |
-
episodic_rewards.append(episodic_reward)
|
| 106 |
-
|
| 107 |
-
mean_reward = np.mean(episodic_rewards)
|
| 108 |
-
std_reward = np.std(episodic_rewards)
|
| 109 |
-
results[env_id] = {"episodic_return_mean": mean_reward, "episodic_reward_std": std_reward}
|
| 110 |
-
logger.info(f"Environment {env_id}: {mean_reward} ± {std_reward}")
|
| 111 |
-
return results
|
| 112 |
-
|
| 113 |
-
|
| 114 |
def _backend_routine():
|
| 115 |
# List only the text classification models
|
| 116 |
rl_models = list(API.list_models(filter="reinforcement-learning"))
|
|
@@ -265,7 +182,7 @@ with gr.Blocks(js=dark_mode_gradio_js) as demo:
|
|
| 265 |
|
| 266 |
|
| 267 |
scheduler = BackgroundScheduler()
|
| 268 |
-
scheduler.add_job(func=backend_routine, trigger="interval", seconds=5 * 60)
|
| 269 |
scheduler.start()
|
| 270 |
|
| 271 |
|
|
|
|
|
|
|
| 1 |
import glob
|
| 2 |
import json
|
|
|
|
| 3 |
import os
|
| 4 |
import pprint
|
| 5 |
|
| 6 |
import gradio as gr
|
|
|
|
|
|
|
| 7 |
import pandas as pd
|
|
|
|
| 8 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 9 |
+
from huggingface_hub import snapshot_download
|
|
|
|
| 10 |
|
| 11 |
from src.css_html_js import dark_mode_gradio_js
|
| 12 |
from src.envs import API, RESULTS_PATH, RESULTS_REPO, TOKEN
|
| 13 |
+
from src.evaluation import ALL_ENV_IDS, evaluate
|
| 14 |
from src.logging import configure_root_logger, setup_logger
|
| 15 |
|
|
|
|
|
|
|
|
|
|
| 16 |
configure_root_logger()
|
| 17 |
logger = setup_logger(__name__)
|
| 18 |
|
| 19 |
pp = pprint.PrettyPrinter(width=80)
|
| 20 |
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
def model_hyperlink(link, model_id):
|
| 23 |
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_id}</a>'
|
| 24 |
|
|
|
|
| 28 |
return model_hyperlink(link, model_id)
|
| 29 |
|
| 30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
def _backend_routine():
|
| 32 |
# List only the text classification models
|
| 33 |
rl_models = list(API.list_models(filter="reinforcement-learning"))
|
|
|
|
| 182 |
|
| 183 |
|
| 184 |
scheduler = BackgroundScheduler()
|
| 185 |
+
scheduler.add_job(func=backend_routine, trigger="interval", seconds=0.5 * 60)
|
| 186 |
scheduler.start()
|
| 187 |
|
| 188 |
|
src/evaluation.py
ADDED
|
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import fnmatch
|
| 2 |
+
from typing import Dict, SupportsFloat
|
| 3 |
+
|
| 4 |
+
import gymnasium as gym
|
| 5 |
+
import numpy as np
|
| 6 |
+
import torch
|
| 7 |
+
from gymnasium import wrappers
|
| 8 |
+
from huggingface_hub import hf_hub_download
|
| 9 |
+
from huggingface_hub.utils._errors import EntryNotFoundError
|
| 10 |
+
|
| 11 |
+
from src.envs import API
|
| 12 |
+
from src.logging import setup_logger
|
| 13 |
+
|
| 14 |
+
logger = setup_logger(__name__)
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
ALL_ENV_IDS = [
|
| 18 |
+
"CartPole-v1",
|
| 19 |
+
"MountainCar-v0",
|
| 20 |
+
"Acrobot-v1",
|
| 21 |
+
"Hopper-v4",
|
| 22 |
+
"MsPacmanNoFrameskip-v4",
|
| 23 |
+
]
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class NoopResetEnv(gym.Wrapper[np.ndarray, int, np.ndarray, int]):
|
| 27 |
+
"""
|
| 28 |
+
Sample initial states by taking random number of no-ops on reset.
|
| 29 |
+
No-op is assumed to be action 0.
|
| 30 |
+
|
| 31 |
+
:param env: Environment to wrap
|
| 32 |
+
:param noop_max: Maximum value of no-ops to run
|
| 33 |
+
"""
|
| 34 |
+
|
| 35 |
+
def __init__(self, env: gym.Env, noop_max: int = 30) -> None:
|
| 36 |
+
super().__init__(env)
|
| 37 |
+
self.noop_max = noop_max
|
| 38 |
+
self.override_num_noops = None
|
| 39 |
+
self.noop_action = 0
|
| 40 |
+
assert env.unwrapped.get_action_meanings()[0] == "NOOP" # type: ignore[attr-defined]
|
| 41 |
+
|
| 42 |
+
def reset(self, **kwargs):
|
| 43 |
+
self.env.reset(**kwargs)
|
| 44 |
+
if self.override_num_noops is not None:
|
| 45 |
+
noops = self.override_num_noops
|
| 46 |
+
else:
|
| 47 |
+
noops = self.unwrapped.np_random.integers(1, self.noop_max + 1)
|
| 48 |
+
assert noops > 0
|
| 49 |
+
obs = np.zeros(0)
|
| 50 |
+
info: Dict = {}
|
| 51 |
+
for _ in range(noops):
|
| 52 |
+
obs, _, terminated, truncated, info = self.env.step(self.noop_action)
|
| 53 |
+
if terminated or truncated:
|
| 54 |
+
obs, info = self.env.reset(**kwargs)
|
| 55 |
+
return obs, info
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
class FireResetEnv(gym.Wrapper[np.ndarray, int, np.ndarray, int]):
|
| 59 |
+
"""
|
| 60 |
+
Take action on reset for environments that are fixed until firing.
|
| 61 |
+
|
| 62 |
+
:param env: Environment to wrap
|
| 63 |
+
"""
|
| 64 |
+
|
| 65 |
+
def __init__(self, env: gym.Env) -> None:
|
| 66 |
+
super().__init__(env)
|
| 67 |
+
assert env.unwrapped.get_action_meanings()[1] == "FIRE" # type: ignore[attr-defined]
|
| 68 |
+
assert len(env.unwrapped.get_action_meanings()) >= 3 # type: ignore[attr-defined]
|
| 69 |
+
|
| 70 |
+
def reset(self, **kwargs):
|
| 71 |
+
self.env.reset(**kwargs)
|
| 72 |
+
obs, _, terminated, truncated, _ = self.env.step(1)
|
| 73 |
+
if terminated or truncated:
|
| 74 |
+
self.env.reset(**kwargs)
|
| 75 |
+
obs, _, terminated, truncated, _ = self.env.step(2)
|
| 76 |
+
if terminated or truncated:
|
| 77 |
+
self.env.reset(**kwargs)
|
| 78 |
+
return obs, {}
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
class EpisodicLifeEnv(gym.Wrapper[np.ndarray, int, np.ndarray, int]):
|
| 82 |
+
"""
|
| 83 |
+
Make end-of-life == end-of-episode, but only reset on true game over.
|
| 84 |
+
Done by DeepMind for the DQN and co. since it helps value estimation.
|
| 85 |
+
|
| 86 |
+
:param env: Environment to wrap
|
| 87 |
+
"""
|
| 88 |
+
|
| 89 |
+
def __init__(self, env: gym.Env) -> None:
|
| 90 |
+
super().__init__(env)
|
| 91 |
+
self.lives = 0
|
| 92 |
+
self.was_real_done = True
|
| 93 |
+
|
| 94 |
+
def step(self, action: int):
|
| 95 |
+
obs, reward, terminated, truncated, info = self.env.step(action)
|
| 96 |
+
self.was_real_done = terminated or truncated
|
| 97 |
+
# check current lives, make loss of life terminal,
|
| 98 |
+
# then update lives to handle bonus lives
|
| 99 |
+
lives = self.env.unwrapped.ale.lives() # type: ignore[attr-defined]
|
| 100 |
+
if 0 < lives < self.lives:
|
| 101 |
+
# for Qbert sometimes we stay in lives == 0 condition for a few frames
|
| 102 |
+
# so its important to keep lives > 0, so that we only reset once
|
| 103 |
+
# the environment advertises done.
|
| 104 |
+
terminated = True
|
| 105 |
+
self.lives = lives
|
| 106 |
+
return obs, reward, terminated, truncated, info
|
| 107 |
+
|
| 108 |
+
def reset(self, **kwargs):
|
| 109 |
+
"""
|
| 110 |
+
Calls the Gym environment reset, only when lives are exhausted.
|
| 111 |
+
This way all states are still reachable even though lives are episodic,
|
| 112 |
+
and the learner need not know about any of this behind-the-scenes.
|
| 113 |
+
|
| 114 |
+
:param kwargs: Extra keywords passed to env.reset() call
|
| 115 |
+
:return: the first observation of the environment
|
| 116 |
+
"""
|
| 117 |
+
if self.was_real_done:
|
| 118 |
+
obs, info = self.env.reset(**kwargs)
|
| 119 |
+
else:
|
| 120 |
+
# no-op step to advance from terminal/lost life state
|
| 121 |
+
obs, _, terminated, truncated, info = self.env.step(0)
|
| 122 |
+
|
| 123 |
+
# The no-op step can lead to a game over, so we need to check it again
|
| 124 |
+
# to see if we should reset the environment and avoid the
|
| 125 |
+
# monitor.py `RuntimeError: Tried to step environment that needs reset`
|
| 126 |
+
if terminated or truncated:
|
| 127 |
+
obs, info = self.env.reset(**kwargs)
|
| 128 |
+
self.lives = self.env.unwrapped.ale.lives() # type: ignore[attr-defined]
|
| 129 |
+
return obs, info
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
class MaxAndSkipEnv(gym.Wrapper[np.ndarray, int, np.ndarray, int]):
|
| 133 |
+
"""
|
| 134 |
+
Return only every ``skip``-th frame (frameskipping)
|
| 135 |
+
and return the max between the two last frames.
|
| 136 |
+
|
| 137 |
+
:param env: Environment to wrap
|
| 138 |
+
:param skip: Number of ``skip``-th frame
|
| 139 |
+
The same action will be taken ``skip`` times.
|
| 140 |
+
"""
|
| 141 |
+
|
| 142 |
+
def __init__(self, env: gym.Env, skip: int = 4) -> None:
|
| 143 |
+
super().__init__(env)
|
| 144 |
+
# most recent raw observations (for max pooling across time steps)
|
| 145 |
+
assert env.observation_space.dtype is not None, "No dtype specified for the observation space"
|
| 146 |
+
assert env.observation_space.shape is not None, "No shape defined for the observation space"
|
| 147 |
+
self._obs_buffer = np.zeros((2, *env.observation_space.shape), dtype=env.observation_space.dtype)
|
| 148 |
+
self._skip = skip
|
| 149 |
+
|
| 150 |
+
def step(self, action: int):
|
| 151 |
+
"""
|
| 152 |
+
Step the environment with the given action
|
| 153 |
+
Repeat action, sum reward, and max over last observations.
|
| 154 |
+
|
| 155 |
+
:param action: the action
|
| 156 |
+
:return: observation, reward, terminated, truncated, information
|
| 157 |
+
"""
|
| 158 |
+
total_reward = 0.0
|
| 159 |
+
terminated = truncated = False
|
| 160 |
+
for i in range(self._skip):
|
| 161 |
+
obs, reward, terminated, truncated, info = self.env.step(action)
|
| 162 |
+
done = terminated or truncated
|
| 163 |
+
if i == self._skip - 2:
|
| 164 |
+
self._obs_buffer[0] = obs
|
| 165 |
+
if i == self._skip - 1:
|
| 166 |
+
self._obs_buffer[1] = obs
|
| 167 |
+
total_reward += float(reward)
|
| 168 |
+
if done:
|
| 169 |
+
break
|
| 170 |
+
# Note that the observation on the done=True frame
|
| 171 |
+
# doesn't matter
|
| 172 |
+
max_frame = self._obs_buffer.max(axis=0)
|
| 173 |
+
|
| 174 |
+
return max_frame, total_reward, terminated, truncated, info
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
class ClipRewardEnv(gym.RewardWrapper):
|
| 178 |
+
"""
|
| 179 |
+
Clip the reward to {+1, 0, -1} by its sign.
|
| 180 |
+
|
| 181 |
+
:param env: Environment to wrap
|
| 182 |
+
"""
|
| 183 |
+
|
| 184 |
+
def __init__(self, env: gym.Env) -> None:
|
| 185 |
+
super().__init__(env)
|
| 186 |
+
|
| 187 |
+
def reward(self, reward: SupportsFloat) -> float:
|
| 188 |
+
"""
|
| 189 |
+
Bin reward to {+1, 0, -1} by its sign.
|
| 190 |
+
|
| 191 |
+
:param reward:
|
| 192 |
+
:return:
|
| 193 |
+
"""
|
| 194 |
+
return np.sign(float(reward))
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
def make(env_id):
|
| 198 |
+
def thunk():
|
| 199 |
+
env = gym.make(env_id)
|
| 200 |
+
env = wrappers.RecordEpisodeStatistics(env)
|
| 201 |
+
if "NoFrameskip" in env_id:
|
| 202 |
+
env = NoopResetEnv(env, noop_max=30)
|
| 203 |
+
env = MaxAndSkipEnv(env, skip=4)
|
| 204 |
+
env = EpisodicLifeEnv(env)
|
| 205 |
+
if "FIRE" in env.unwrapped.get_action_meanings():
|
| 206 |
+
env = FireResetEnv(env)
|
| 207 |
+
env = ClipRewardEnv(env)
|
| 208 |
+
env = wrappers.ResizeObservation(env, (84, 84))
|
| 209 |
+
env = wrappers.GrayScaleObservation(env)
|
| 210 |
+
env = wrappers.FrameStack(env, 4)
|
| 211 |
+
return env
|
| 212 |
+
|
| 213 |
+
return thunk
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
def pattern_match(patterns, source_list):
|
| 217 |
+
if isinstance(patterns, str):
|
| 218 |
+
patterns = [patterns]
|
| 219 |
+
|
| 220 |
+
env_ids = set()
|
| 221 |
+
for pattern in patterns:
|
| 222 |
+
for matching in fnmatch.filter(source_list, pattern):
|
| 223 |
+
env_ids.add(matching)
|
| 224 |
+
return sorted(list(env_ids))
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
def evaluate(model_id, revision):
|
| 228 |
+
tags = API.model_info(model_id, revision=revision).tags
|
| 229 |
+
|
| 230 |
+
# Extract the environment IDs from the tags (usually only one)
|
| 231 |
+
env_ids = pattern_match(tags, ALL_ENV_IDS)
|
| 232 |
+
logger.info(f"Selected environments: {env_ids}")
|
| 233 |
+
|
| 234 |
+
results = {}
|
| 235 |
+
|
| 236 |
+
# Check if the agent exists
|
| 237 |
+
try:
|
| 238 |
+
agent_path = hf_hub_download(repo_id=model_id, filename="agent.pt")
|
| 239 |
+
except EntryNotFoundError:
|
| 240 |
+
logger.error("Agent not found")
|
| 241 |
+
return None
|
| 242 |
+
|
| 243 |
+
# Check safety
|
| 244 |
+
security = next(iter(API.get_paths_info(model_id, "agent.pt", expand=True))).security
|
| 245 |
+
if security is None or "safe" not in security:
|
| 246 |
+
logger.error("Agent safety not available")
|
| 247 |
+
return None
|
| 248 |
+
elif not security["safe"]:
|
| 249 |
+
logger.error("Agent not safe")
|
| 250 |
+
return None
|
| 251 |
+
|
| 252 |
+
# Load the agent
|
| 253 |
+
try:
|
| 254 |
+
agent = torch.jit.load(agent_path)
|
| 255 |
+
except Exception as e:
|
| 256 |
+
logger.error(f"Error loading agent: {e}")
|
| 257 |
+
return None
|
| 258 |
+
|
| 259 |
+
# Evaluate the agent on the environments
|
| 260 |
+
for env_id in env_ids:
|
| 261 |
+
envs = gym.vector.SyncVectorEnv([make(env_id) for _ in range(3)])
|
| 262 |
+
observations, _ = envs.reset()
|
| 263 |
+
episodic_returns = []
|
| 264 |
+
while len(episodic_returns) < 10:
|
| 265 |
+
actions = agent(torch.tensor(observations)).numpy()
|
| 266 |
+
observations, _, _, _, infos = envs.step(actions)
|
| 267 |
+
if "final_info" in infos:
|
| 268 |
+
for info in infos["final_info"]:
|
| 269 |
+
if info is None or "episode" not in info:
|
| 270 |
+
continue
|
| 271 |
+
episodic_returns.append(info["episode"]["r"])
|
| 272 |
+
|
| 273 |
+
mean_reward = float(np.mean(episodic_returns))
|
| 274 |
+
std_reward = float(np.std(episodic_returns))
|
| 275 |
+
results[env_id] = {"episodic_return_mean": mean_reward, "episodic_reward_std": std_reward}
|
| 276 |
+
logger.info(f"Environment {env_id}: {mean_reward} ± {std_reward}")
|
| 277 |
+
return results
|