File size: 13,196 Bytes
719d0db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
from tqdm.autonotebook import tqdm
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchmetrics.classification import MulticlassAccuracy, MulticlassF1Score
from models.classifiers.nn_classifiers.nn_classifier import NNClassifier
from models.loss_functions import GeneralCrossEntropy
from utils.data_utils.tsptw_dataset import TSPTWDataloader
from utils.data_utils.pctsp_dataset import PCTSPDataloader
from utils.data_utils.pctsptw_dataset import PCTSPTWDataloader
from utils.data_utils.cvrp_dataset import CVRPDataloader
from utils.utils import set_device, count_trainable_params, batched_bincount, fix_seed

def main(args):
    #---------------
    # seed settings
    #---------------
    fix_seed(args.seed)

    #--------------
    # gpu settings
    #--------------
    use_cuda, device = set_device(args.gpu)

    #-------------------
    # model & optimizer
    #-------------------
    num_classes = 3 if args.problem == "pctsptw" else 2
    model = NNClassifier(problem=args.problem,
                         node_enc_type=args.node_enc_type,
                         edge_enc_type=args.edge_enc_type,
                         dec_type=args.dec_type,
                         emb_dim=args.emb_dim,
                         num_enc_mlp_layers=args.num_enc_mlp_layers,
                         num_dec_mlp_layers=args.num_dec_mlp_layers,
                         num_classes=num_classes,
                         dropout=args.dropout,
                         pos_encoder=args.pos_encoder)
    is_sequential = model.is_sequential
    if use_cuda:
        model.to(device)
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)

    # count number of trainable parameters
    num_trainable_params = count_trainable_params(model)
    print(f"num_trainable_params: {num_trainable_params}")
    with open(f"{args.model_checkpoint_path}/num_trainable_params.dat", "w") as f:
        f.write(str(num_trainable_params))

    # loss function
    if not is_sequential:
        assert args.loss_function != "seq_cbce", "Non-sequential model does not support the loss funtion: seq_cbce"
    loss_func = GeneralCrossEntropy(weight_type=args.loss_function, beta=args.cb_beta, is_sequential=is_sequential)

    #---------
    # dataset
    #---------
    if args.problem == "tsptw":
        train_dataset = TSPTWDataloader(args.train_dataset_path, sequential=is_sequential, parallel=args.parallel, num_cpus=args.num_cpus)
        if args.valid_dataset_path is not None:
            valid_dataset = TSPTWDataloader(args.valid_dataset_path, sequential=is_sequential, parallel=args.parallel, num_cpus=args.num_cpus)
    elif args.problem == "pctsp":
        train_dataset = PCTSPDataloader(args.train_dataset_path, sequential=is_sequential, parallel=args.parallel, num_cpus=args.num_cpus)
        if args.valid_dataset_path is not None:
            valid_dataset = PCTSPDataloader(args.valid_dataset_path, sequential=is_sequential, parallel=args.parallel, num_cpus=args.num_cpus)
    elif args.problem == "pctsptw":
        train_dataset = PCTSPTWDataloader(args.train_dataset_path, sequential=is_sequential, parallel=args.parallel, num_cpus=args.num_cpus)
        if args.valid_dataset_path is not None:
            valid_dataset = PCTSPTWDataloader(args.valid_dataset_path, sequential=is_sequential, parallel=args.parallel, num_cpus=args.num_cpus)
    elif args.problem == "cvrp":
        train_dataset = CVRPDataloader(args.train_dataset_path, sequential=is_sequential, parallel=args.parallel, num_cpus=args.num_cpus)
        if args.valid_dataset_path is not None:
            valid_dataset = CVRPDataloader(args.valid_dataset_path, sequential=is_sequential, parallel=args.parallel, num_cpus=args.num_cpus)
    else:
        raise NotImplementedError

    #------------
    # dataloader
    #------------
    if is_sequential:
        def pad_seq_length(batch):
            data = {}
            for key in batch[0].keys():
                padding_value = True if key == "mask" else 0.0
                # post-padding
                data[key] = torch.nn.utils.rnn.pad_sequence([d[key] for d in batch], batch_first=True, padding_value=padding_value)
            pad_mask = torch.nn.utils.rnn.pad_sequence([torch.full((d["mask"].size(0), ), True) for d in batch], batch_first=True, padding_value=False)
            data.update({"pad_mask": pad_mask})
            return data
        collate_fn = pad_seq_length
    else:
        collate_fn = None
    train_dataloader = DataLoader(train_dataset,
                                  batch_size=args.batch_size,
                                  shuffle=True,
                                  collate_fn=collate_fn,
                                  num_workers=args.num_workers)
    if args.valid_dataset_path is not None:
        valid_dataloader = DataLoader(valid_dataset,
                                      batch_size=args.batch_size,
                                      shuffle=False,
                                      collate_fn=collate_fn,
                                      num_workers=args.num_workers)

    #---------
    # metrics
    #---------
    macro_accuracy = MulticlassF1Score(num_classes=num_classes, average="macro")
    if use_cuda:
        macro_accuracy.to(device)

    #---------------
    # training loop
    #---------------
    best_valid_accuracy = 0.0
    model.train()
    with tqdm(range(args.epochs + 1)) as tq1:
        for epoch in tq1:
            #--------------------------
            # save the current weights
            #--------------------------
            # print(f"Epoch {epoch}: saving a model to {args.model_checkpoint_path}/model_epoch{epoch}.pth...", end="", flush=True)
            torch.save(model.cpu().state_dict(), f"{args.model_checkpoint_path}/model_epoch{epoch}.pth")
            model.to(device)
            # print("done.")

            #------------
            # validation
            #------------
            model.eval()
            with torch.no_grad():
                tq1.set_description(f"Epoch {epoch}")
                # check train accuracy
                for data in train_dataloader:
                    if use_cuda:
                        data = {key: value.to(device) for key, value in data.items()}
                    probs = model(data)
                    if is_sequential:
                        mask = data["pad_mask"].view(-1) # [batch_size x max_seq_length] -> [(batch_size*max_seq_length)]
                        macro_accuracy(probs.argmax(-1).view(-1)[mask], data["labels"].view(-1)[mask])
                    else:
                        macro_accuracy(probs.argmax(-1).view(-1), data["labels"].view(-1))
                train_macro_accuracy = macro_accuracy.compute()
                # print(f"Epoch {epoch}: Train_accuracy={total_macro_accuracy}", flush=True)
                macro_accuracy.reset()

                # check valid accuracy
                if args.valid_dataset_path is not None:
                    for data in valid_dataloader:
                        if use_cuda:
                            data = {key: value.to(device) for key, value in data.items()}
                        probs = model(data)
                        if is_sequential:
                            mask = data["pad_mask"].view(-1) # [batch_size x max_seq_length] -> [(batch_size*max_seq_length)]
                            macro_accuracy(probs.argmax(-1).view(-1)[mask], data["labels"].view(-1)[mask])
                        else:
                            macro_accuracy(probs.argmax(-1).view(-1), data["labels"].view(-1))
                    valid_macro_accuracy = macro_accuracy.compute()
                    # print(f"Epoch {epoch}: Valid_accuracy={total_macro_accuracy}", flush=True)
                    macro_accuracy.reset()
            model.train()
            tq1.set_postfix(Train_accuracy=train_macro_accuracy.item(), Valid_accuracy=valid_macro_accuracy.item())
            
            # update the best epoch
            if valid_macro_accuracy >= best_valid_accuracy:
                best_valid_accuracy = valid_macro_accuracy
                with open(f"{args.model_checkpoint_path}/best_epoch.dat", "w") as f:
                    f.write(str(epoch))

            #--------------------
            # update the weights
            #--------------------
            if epoch < args.epochs:
                with tqdm(train_dataloader, leave=False) as tq:
                    tq.set_description(f"Epoch {epoch}")
                    for data in tq:
                        if use_cuda:
                            data = {key: value.to(device) for key, value in data.items()}
                        out = model(data)
                        if is_sequential:
                            loss = loss_func(out, data["labels"], data["pad_mask"])
                        else:
                            loss = loss_func(out, data["labels"])
                        # if is_sequential:
                        #     # mask = data["pad_mask"].view(-1) # [batch_size x max_seq_length] -> [(batch_size*max_seq_length)]
                        #     # # out = out.view(-1, out.size(-1))
                        #     # # bincount = data["labels"].view(-1)[mask].bincount()
                        #     # # weight = bincount.min() / bincount
                        #     # # loss = F.nll_loss(out[mask], data["labels"].view(-1)[mask], weight=weight)
                        #     # bin = batched_bincount(data["labels"].T, 1, out.size(-1)) # [max_seq_length x num_classes]
                        #     # bin_max, _ = bin.max(-1)
                        #     # weight = bin_max[:, None] / (bin + 1e-8) 
                        #     # weight = weight / weight.max(-1, keepdim=True)[0]
                        #     # # weight = (1 - beta) / (1 - beta**bin)
                        #     # # print(weight)
                        #     # loss = 0.0 # torch.FloatTensor([0.0]).to(device)
                        #     # for seq_no in range(weight.size(0)):
                        #     #     loss += F.nll_loss(out[:, seq_no], data["labels"][:, seq_no], weight=weight[seq_no])
                        # else:
                        #     bincount = data["labels"].view(-1).bincount()
                        #     weight = (1 - beta) / (1 - beta**bincount) 
                        #     loss = F.nll_loss(out, data["labels"].squeeze(-1), weight=weight)
                        optimizer.zero_grad()
                        loss.backward()
                        optimizer.step()
                        tq.set_postfix(Loss=loss.item())

if __name__ == "__main__":
    import datetime
    import json
    import os
    import argparse
    now = datetime.datetime.now()
    parser = argparse.ArgumentParser()
    # general settings
    parser.add_argument("-p", "--problem", default="tsptw", type=str, help="Problem type: [tsptw, cvrptw]")
    parser.add_argument("--gpu", default=-1, type=int, help="Used GPU Number: gpu=-1 indicates using cpu")
    parser.add_argument("--num_workers", default=4, type=int, help="Number of workers in dataloader")
    parser.add_argument("-s", "--seed", type=int, default=1234, help="Random seed for reproductivity")
    # data setting
    parser.add_argument("-train", "--train_dataset_path", type=str, help="Path to a read file", required=True)
    parser.add_argument("-valid", "--valid_dataset_path", type=str, default=None)
    parser.add_argument("--parallel", action="store_true")
    parser.add_argument("--num_cpus", type=int, default=4)
    # training settings
    parser.add_argument("-e", "--epochs", default=100, type=int, help="Number of epochs")
    parser.add_argument("-b", "--batch_size", default=256, type=int, help="Batch size")
    parser.add_argument("--lr", default=0.001, type=float, help="Learning rate")
    parser.add_argument("--cb_beta", default=0.99)
    # parser.add_argument("--valid_interval", default=1, type=int, help="interval outputting intermidiate test accuracy")
    # parser.add_argument("--model_save_interval", type=int, default=1)
    parser.add_argument("--model_checkpoint_path", type=str, default=f"checkpoints/model_{now.strftime('%Y%m%d_%H%M%S')}")
    # model settings
    parser.add_argument("-loss", "--loss_function", type=str, default="seq_cbce", help="[seq_cbce, cbce, wce, ce]")
    parser.add_argument("-node_enc", "--node_enc_type", type=str, default="mlp")
    parser.add_argument("-edge_enc", "--edge_enc_type", type=str, default="attn")
    parser.add_argument("-dec", "--dec_type", type=str, default="lstm")
    parser.add_argument("-pe", "--pos_encoder", type=str, default="sincos")
    parser.add_argument("--emb_dim", type=int, default=128)
    parser.add_argument("--num_enc_mlp_layers", type=int, default=2)
    parser.add_argument("--num_dec_mlp_layers", type=int, default=3)
    parser.add_argument("--dropout", default=0.0, type=float, help="Dropout probability")
    args = parser.parse_args()

    os.makedirs(args.model_checkpoint_path, exist_ok=True)
    with open(f'{args.model_checkpoint_path}/cmd_args.dat', 'w') as f:
        json.dump(args.__dict__, f, indent=2)

    main(args)