import gradio as gr from huggingface_hub import InferenceClient # 🔹 Initialize Hugging Face Inference Client client = InferenceClient(model="one1cat/FineTunes_LLM_CFR_49") def respond(message, history, system_message, max_tokens, temperature, top_p): """ Generates responses using the fine-tuned CFR 49 model hosted on Hugging Face. """ prompt = f"{system_message}\n\nUser: {message}\n\nAssistant:" response = "" try: # 🔥 Use raw API request instead of `text_generation()` result = client.post( json={"inputs": prompt, "parameters": { "max_new_tokens": max_tokens, "temperature": temperature, "top_p": top_p }}, ) response = result.text yield response except Exception as e: yield f"Error: {str(e)}" # 🔹 Gradio Chat Interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a CFR 49 regulatory compliance assistant.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], ) if __name__ == "__main__": demo.launch()